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FOREWORD 

The DepartmeDt of Agriculture has often been urged to do more 
^^basic*' or ^^fundamental" research. It has also been urged to do 
inore research to provide information needed in formulating policy 
and operating programs. The study here reported responds to both 
these recommendations. It is an analysis of fundamental economic 
principles for managing a pubhc storage program for grains. 

Since it is basic research, it does not tell how many bushels of 
wheat or com should be placed in storage or withdrawn from storage 
this year or next year. Rather, it develops rules that the adminis- 
trator of a grain storage program—^with the help of his ecoûomic and 
statistical advisors—can apply for deciding how much to store or 
release in any given year. 

A pubUc storage program may have a single objective or a combi- 
nation of objectivées. Among the pm-poses that have been talked 
about for such programs are stabiHzation of suppUes from year to 
year, stabilization of prices, stabilization of producers' returns, safe- 
guarding against national emergency, getting the greatest retmn for 
producers, supplying consumers* needs at lowest cost, and maximiz- 
ing the "pubhc benefit.'* The example worked out in this study as- 
sumes the last-named objective. Also, it assumes that the area xmder 
the demand curve can be used as an estimate of pubhc benefit. In 
this particular case, the study shows that the optimum storage pro- 
gram would be identical with the program we would expect private 
industry to carry out if there were pure and perfect competition. 

But while the example is worked out in terms of the area under 
the demand curve, the general principles of this study coxild be ap- 
phed in any case where both the objectives and the cost of the pro- 
gram can be stated in definite and quantitative terms. Given any 
sort of "value function," this study shows how to take into accoimt 
such factors as the initial supply on hand, prospective acreage and 
variabihty in yield in future years, characteristics of demand for the 
product, and costs of storage, including both handüng costs and 
interest on the money invested. 

This study was carried on at the University of Chicago in large 
part under contract with the United States Department of Agricul- 
ture. It makes a substantial addition to our understanding of rela- 
tionships relevant to sound management of a storage program. 

FREDERICK V. WAUGH, 
Director, Agricultural Economics Division. 

WASHINGTON, D. C. Issued October 1958 

For sale by the Superintendent of Documents, U. S. Government Printing Office 
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CARRYOVER LEVELS FOR GRAINS 

A Method for Determining Amounts that are Optimal Under 
Specified Conditions 

By RoBEKT L. GusTAFSON, Assistant Professor of Economics, University of Chicago ^ 

SUMMARY 
The idea that annual fluctuations in supphes of grains and other 

storable agricultural commodities can or should be evened out through 
the medium of year to year storage is thousands of years old. Despite 
the existence of a considerable body of Hteratiwe on the subject, how- 
ever, the following important questions have not been fully and 
rigorously answered: (1) In any year—or better, in each year of a 
contemplated period of years—exactly how much grain should be put 
into or removed from storage, given the best available information on 
the conditions that are relevant to making such a decision? (2) 
Giv^n the quantity of grain that is to be stored in the nation as a whole 
in any year, what is the best regional distribution of that quantity of 
storage, that is, where should the grain be kept and in what amoimts? 

For complete mathematical rigor, both the national and the regional 
aspects of the storage question should be answered simidtaneously. 
A mathematical solution for optimal multiregional rules is given. It 
tm-ns out, however, that even for the simplest case—that is, a 2-year, 
2-region model—the computations would be formidable except on a 
hi^h-speed electronic computer. The bulletin, therefore, is concerned 
chiefly with methods of determining optimal storage policy at the 
national level. 

Decisions made by farmers and the trade with respect to quantities 
to be carried over from one period to another chiefly depend on their 
expectations of relative current and futiu-e prices. Decisions on the 
part of governmental agencies with respect to storage policies generally 
reflect other sorts of considerations. Here the goal may be to even 
out supplies, to assure minimum stocks to meet emergency require- 
ments, or to maintain stable returns to producers. The examples 
given in this bulletin relate chiefly to obtaining a storage policy that 
will result in the maximum net beneflt to the general public, when 
total benefit is measured as the area under the demand curve, although 
the general approach used could be apphed to several alternative goals. 

This bulletin is concerned basically with procedures that can be 
used to even out supplies of grain by varying the quantity carried 
over from year to year.    In actual practice, stabilization proposals 

Ï This work was started and in considerable part completed while the author 
was a Research Assistant at the University of (Jhicago. Richard J. Foote of the 
Agricultural Marketing Service gave substantial assistance in preparing the 
report. Helpful advice was received from several people at the University and in 
the Department of Agriculture, including in particular K. A. Fox, I. Herstein, 
D. G. Johnson, J. Marschak, T. W. Schultz, G. Tolley, and W. A. Wallis. 
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seldom rely only on storage. Instead, in times of surplus, use is also 
made of export subsidies or other export disposal programs and of 
domestic diversion programs. A research program currently in prog- 
ress is considering the relative costs and gams to farmers and the 
general public of alternative combined programs, and of a storage 
policy designed primarily to support prices of particular commodities 
at desired levels as contrasted with the procedures developed in this 
bulletin, which are designed primarily to even out year-to-year 
suppUes. 

Before applying the methods, we must first make some judgment 
concerning the value to the general pubHc of consuming alternative 
amounts of grain in various years. Here we are concerned essentially 
with the relative value obtained by consuming a fairly stable quantity 
of grain in each of several years, or of consuming the same total quan- 
tity over the entire period but in variable amounts from one year to 
the next. One way of making a rough estimate of the value of con- 
suming a specific amount of grain is to take the area under a demand 
curve. This procedure frequently has been followed by economists 
in the past, and it is used in most of this report. However, the 
general approach used to derive the rules developed here can be ap- 
pHed to any method of measuring total value so long as this value 
can be expressed as some sort of function of the quantity' consumed. 

Having defined the total value to the general public m each year 
as a fimction of the quantity consumed in that year, we note that the 
quantity consumed in turn is equal to the initial supply, that is, pro- 
duction plus beginning stocks, minus the carryover. We next define 
net benefit in any year as the total value less costs of storage^ includ- 
ing interest on the investment. In any given year, then, for a given 
level of initial supply, determination of the carryover determines each 
of the following: The quantity consumed (supply minus carryover), 
total value (a function of quantity consumed), cost of storage (a func- 
tion of the carryover). and the net benefit (total value minus cost of 
storage). Thus, all oi these variables, in particular the net benefit— 
with which we are primarily concerned—depend on or are determined 
by the level of initial supply and the level of carryover. Hence, if it 
is possible to specify some functional relationship between the carry- 
over and the initial supply, then the relevant variables, including net 
benefit, are determined by the initial supply and the specified func- 
tional relationship. Such a relationship between supply and carry- 
over we shall call a storage rule. It may be thought of as a table in 
which, for various possible different levels of supply, the corresponding 
carryover is given; or as a graph on which the same information is 
specified; or in some cases possibly as a mathematical formula. 

The first question that suggests itself is whether it is possible to 
specify, and to determine the values of, such storage rules. One of 
tne objects of this bulletin is to show that it is not only possible, but 
indeed necessary, to specify such relationships or rules, imder the 
conditions and objectives stipulated; and also to show how the values 
of the rules can be obtained. 

A storage policy for a period of years is defined as a set of storage 
rules, .one for each year. If we consistently follow a set of storage 
rules, the net benefit in any year depends on the initial supply and 
the rule for that year.   The supply is equal to beginning stocks pins 
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production. Beginning stocks, in turn, depend on the supply and 
the storage rule applied in the preceding year; hence it is necessary, 
in general, in analyzing the storage problem, to think in terms of sets 
of storage rules rather than an isolated rule or level of storage for a 
single year. Fiu^thermore, levels of production in future years are in 
general not known; we get around this difficulty by making use of 
their estimated probability distributions. Using these probability 
distributions, it is conceptually possible, for a given set of storage 
rules, to obtain an average, or '^mathematically expected" value for 
the net benefit in each future year. Applying an appropriate discount 
factor for each year to obtain the '^present value'' of the benefits, 
we add together and obtain the sum of discounted expected net bene- 
fits in all future years. An optimal storage policy, as given in this 
bulletin, is defined as that set of storage rules which maximizes the 
sum of discounted expected net benefits in all future years (or, in 
some cases, for a specified nmnber of future years) for any given 
initial supply of grain in the initial year. The resulting storage rules 
state how much grain should be carried over into the following period 
given the initial supply for the current year. 

Material in the buUetin is concerned primarily with methods for 
obtaining such rules; institutional, administrative, or statutory 
arrangements required to bring about the storage of such quantities 
are considered as outside its scope. It is shown, however, that, under 
certain conditions, the operations of private firms in a competitive 
market will result in the storage of quantities called for by the optimal 
rules. It should be noted that the methods for obtaining the rules 
developed here in general do not, for reasons of mathematical and 
computational feasibility, follow directly the procedure which might 
be suggested by the preceding paragraph; the discussion there is partly 
conceptual, the purpose being to outline the nature of the criterion of 
optimality; one of the objects of the bulletin is to present methods 
which are mathematically and computationally feasible and which 
will result in storage rules that do satisfy the criterion. 

Methods by which alternative conditions can be incorporated into 
the rules are given. For example, allowance could be made for 
anticipated future variability in domestic demand if this could be 
measured. Likewise, the rules can be modified to maximize expected 
gains to a particular sector of the economy, such as farmers, if this 
appears desirable. Or they may be designed to stabilize prices rather 
than Quantities utilized, as in the empirical examples shown. The 
general approach outlined is general enough to be applied to many 
different conditions and criteria. Thus, for example, the method of 
solution can readily be modified or extended to allow for the effects of 
foreign trade on the relevant conditions. However, for the sake of 
simplicity and because of some imcertainty about the accuracy of 
available estimates of future demaad and supply conditions in foreigù 
countries for grains (such as wheat), for which such estimates would 
be important, the empirical applications presented in this bulletin 
are confined to storageable commodities (namely, feed grains) for 
which net foreign trade is small in relation to total domestic use. 

Storage rules for feed grains under 12 sets of alternative conditions 
are shown both in table and chart form. The charts are designed to 
show the effect on the rules of alternative assumptions about specified 
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conditions; they show that similarities, other than level, are greater 
than differences, even for the wide variety of conditions for which 
rules are computed. An equilibrium level for each rule is given in the 
table. It can be thought of as an average level around which the 
yearly carryovers over a long period tend to fluctuate for a given 
storage rule. The carryover that would be reached following two 
bumper crops also is given. Equilibrium carryovers for the com 
equivalent of all com, oats, and barley vary among the different rules 
from an approximate minimum workingstock level of 200 million 
bushels to 578 million bushels; the corresponding carryovers following 
two bumper crops vary from 774 to 1,656 million bushels. 

Some knowledge of mathematics and probability calculus is required 
to derive the mathematical solutions upon which the storage rules are 
based; but, computation of the rules for particular empirical appli- 
cations requires only numerical iterative procedures. In some cases, 
the required computations become extensive, and a shortcut method 
for approximating a rule imder specified coaditions is given. The 
shortcut method requires the use of relatively few arithmetic opera- 
tions. Examples are shown to illustrate that the shortcut method 
results in a rule that is nearly the same as that computed by the more 
exact iterative method. 

The basic priaciples that underlie the rules and some general con- 
clusions with respect to storage that can be drawn from them are dis- 
cussed in detail in nonmathematical terms; these sections of the 
bulletin require only a limited knowledge of mathematical symbols 
and operations. Mathematical solutions for the storage rules and 
certain special relationships that pertaia to the storage problem then 
are given for the use of research workers who may have an interest in 
them. 

INTRODUCTION 
From a standpoint of national policy, storage is important chiefly 

because of fluctuations in supply and demand through periods that 
extend up to several years in length. If neither production nor 
quantities needed for consumption varied, a uniform amoimt would 
be produced and consimied in each year and only minimum workiog 
stocks would be carried over from one year to the next. We all know 
that for graiQs, in particular, production changes greatly from year to 
year, reflecting chiefly variations in yield due to weather. In some 
recent years, production also has been affected to a significant extent 
by Government regulation of acreage. Year-to-year fluctuations in 
demand in general are less violent. But at times, as during or imme- 
diately following a major war, material changes may take place and 
may affect consumption for several years. Other factors, such as 
changes in taste and technology, are of perhaps greater importance in 
bringing about long-run changes in supply and demand. 

This bulletin describes analytical techniques that deal with the 
question: For the nation as a whole, in any year, how much grain 
should be put into, or removed from, storage, given the best avaüable 
information on conditions which are relevant to making such a 
decision. Results of applying the method to obtain storage rules for 
total feed grains in the United States which are optimal under specified 
alternative assumptions are shown. 
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The term "storage rule/' as used in this bulletin, is a statement 
or formula that indicates, in any given year, how much should be 
carried over into the following period under specified conditions. 
An optimal set of storage ndes is a set of rules that achieves specified 
desired objectives, which, because of imcertainty about relevant 
futm*e conditions, are usually stated in terms of expected vatóte»^" 
of specified variables over a period of years. 

Conditions that are relevant in making decisions with respect to 
storage maj^ be divided into three categories: Those that relate to 
(1) production of the grain (supply), (2) utilization of the grain 
(demand), and (3) costs of storage and the interest rate (or the rate 
at which future costs and returns are discounted to get their present 
value). An explicit solution of the storage problem also must specify 
a criterioQ of optimality, by which is meant the end or objective in 
view. Because of the diversity of possible ends, any solution to the 
grain storage problem obtained by economic analysis alone must be 
a "proposed'' solution; the actual choice of a policy must depend 
on the choice of objective. But with a given criterion of optimality, 
the economic analyst can provide what appears to be a "best" solution 
to the storage problem and the method outlined here is sufläciently 
general to be applied to many diflFerent criteria. 

OPTIMAL STORAGE RULES AT THE NATIONAL 
LEVEL 

A CRITERION OF OPTIMALITY 
The criterion adopted here is the maximization of expected gain 

(or equivalently, the minimization of expected loss) to the general 
public arising from grain-storage operations over a period of years, 
where the "gain" is defined as specified on page 17, and where 
"expected" means "the mathematical expectation of" or "themeeafn 
of the probability distribution of." This criterion is believed to be 
generally acceptable, and it presumably imderlies, implicitly or ex- 
plicitly, most discussions of grain storage and related problems. The 
criterion can be discussed from three viewpoints: 

1. Use of expected values implies that probability calculus is relevant; that is, 
that quantities which are not known with certainty can be treated as random 
variables, subject to probability distributions which are known or can be esti- 
mated. In the grain storage problem, as treated here, the main emphasis (at 
least initially) is on the element of uncertainty introduced by fluctuations in 
future yields per acre. On the basis of existing historical and technological data 
on yields, the construction of reasonably good estimates of probability distri- 
butions of future yields appears to be possible. To the extent that future fluctua- 
tions in other relevant variables (for example, demand, or acreage planted) can 
be treated as random (that is, subject to a known probability distribution), 
such fluctuations can be introduced explicitly into the solution. 

2. The gain to be maximized is intended to be the gain to the general public, 
rather than to some pariiicular sector of the economy, such as farmers or grain 
dealers.^ However, the method of solution can be readily modified to maximize 
expected gains for any particular sector, if desired. 

* For a discussion of the theory of storage and an examination of possible 
alternative objectives, see Johnson (Ö, ch. 10) ♦ and the accompanying bibliog- 
raphy. 

♦Throughout this bulletin, italicized numbers in parentheses refer to Literature 
Cited, p. 64. 

446979*—58 2 
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3. The criterion used here is stated in terms of net gains or losses arising from 
changes in quantities stored or utilized, rather than in terms of price stabilization. 
It is clear, however, that a program that partially or fully stabilizes quantities 
utilized iö equivalent to a program that partially or fully stabilizes prices, given 
ño change in the general price level or the level of demand. The carryover rules 
c(etermined in this bulletin can easily be converted into equivalent price-setting 
rules.« 

The discussion in this bulletin pertains to the determination of 
desirable quantities to be stored under given circumstances, with 
little attention devoted to the institutional, administrative, or statu- 
tory arrangements required to bring about the storage of such quan- 
tities. Once the optimum amoimt to be stored is determined, the 
actual storage of that amount could be effectuated by various means, 
for example, by (1) outright govenmiental purchase or sale of the 
grain and storage by a governmental agency; (2) a price-setting, 
government-loan program to control private holdings of the grain; 
or perhaps (3), imder some circumstances, simply improvement in 
information and stability of expectations in a free market for grains. 
Relations between "optimal" storage rules and storage activity that 
w:oidd tend to occur in an ''idealized'' free market are considered 
on page 48. 

PROPOSALS WITH RESPECT TO GRAIN STORAGE THAT 
HAVE BEEN MADE PREVIOUSLY 

The levd-of-storage approach.—The usual approach to the grain stor- 
age problem is in terms of a ''level of storage." The analyst attempts 
to determine how much grain would have to be available from storage 
t^p offset the effects of certain contingencies such as a low yield or series 
of yields, or a war. He then estimates the average time for which the 
stocks would have to be held and the costs of holding the stocks over 
this period, and weighs such costs against the estimated benefits. 
Since the cost of holding suflScient stocks to offset any conceivable 
contingency, or even an actual unusual occurrence such as the droughts 
of the mid-1930's, turns out to be prohibitive, some compromise with 
the "ideal" of a complete offset must be made by an arbitrary method, 
and a "level" is arrived at which is adequate partially to offset certain 
contingencies. This approach has been used, for example, by Shepherd 
(10) and the authors of a recent Congressional report (12), 

The author of this bulletin believes that such an approach is neces- 
sarily an inadequate solution to the storage problem. The reasons for 
the inadequacy may be summarized under the following points: 

1. From the standpoint of an administrator who has to make actual storage 
decisions, a policy stated in terms of levels is almost meaningless. Under such a 
policy he knows only that he must operate in such a way that in the long run the 
amount in storage will tend toward the stipulated level, but this provides little 
guidance in determining how much to add to or subtract from storage in any given 
y;ear. Suppose, for example, that stocks at the beginning of the current crop year 
are 10 percent below the recommended level, and the harvest in the current year 
is also 10 percent below normal. Should stocks be increased to bring them toward 
the recommended level (and if so, by how much), or should they be depleted further 
in, order to augment the short crop (and if so, by how much) ? A "level of storage" 
poHey is of little help in answering such a question. What is needed is & rule of 
storage which indicates, for any specified level of stocks at the beginning of the 
year ïcarry-in) and any harvest, what amount should be added to or taken from 
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stocks during; the year or, equivalently, what the level of stocks should be at the 
end of tile year, that is, the carry-out. 

2. The economic analyst is faced with an analogous situation, but the argument 
may be carried somewhat further. In this situation, we are trying to analyze how 
to divide an existing supply of grain between current and future use in such a wav 
as to maximize the expected benefits to be derived from the use of the çrain, both 
present arid future, less expected costs. The answer to this question is a rule of 
storage, applicable this year. But the answer depends, in general, on how the 
grain is used in those future years and, in particular, on how it is distributed among 
those future years. Thus, it depends on the storage rules that are in operation in 
those years. We can say, then, that a storage policy intended to minimize losses 
or maxircdze benefits must be in the form of a set of storage rules. And, as we shall 
see, a straightforward, logical, and computational appfícation of the criterion oí 
maximizing thé sum of discounted expected gains arising from storage operations 
results in such a set of rules. A storage policy stated in terms of a desired level 
of storage, on the other hand, never can be shown to be optimal, that is, no objec- 
tive way exists for showing that one level is better than another. 

Three modifications or additions to the above argument should be 
mentioned: 

1. Anyone who discusses the determination of proper levels of storage obviously 
has in mind that the stocks will be manipulated in accordance with some kind of 
not-formally-defined ^^rule," that is, presumably, stocks generally will tend to 
build up in years of good crops and be depleted in years of poor crops. But this 
rule must be formally defined and quantified in order to make storage operations 
optimal: 

2. Once the storage rules are determined, in some cases we can define and cal- 
culate, from the rules, what might be termed an ^^equilibrium" storage level, that 
is, a level toward which stocks tend, on the average and in the long run, when the 
ruleô are applied. In this way, storage rules can be related to, or compared with, 
what may be an intuitively more understandable concept of storage levels. 

3. Suppose the criterion of maximizing expected gain is in fact rejected, and 
instead, for military reasons or otherwise, it is desired to have on hand at the end 
of a certain period (say 5 years) a specified level of reserve stocks. The problem is 
to determine the best way to build stocks to that level. Again we need a set of 
storage rules^ and the method given here can be directly applied to such a problem.. 
But a better way exists—as shown on page 57 to adjust storage policy to providé 
for the existence of military or other contingencies than simply building stocks to 
a predetermined level at the end of a period of years. 

Storage rules based on a plausible functional form,—Granted, then, 
that the problem we face is the determination of good storage rules, 
where a rule for a given year is defined as a fimction which states, for 
each possible quantity of available supply, or harvest and carry-in, 
what should be the carry-out, the next question that crises is how to 
solve that problem. The simplest approach might appear to be (1) to 
assimae some plausible fxmctional form for the rule, (2) to calculate 
expected costs and benefits under the rule, such expected values being 
functions of the coefficients or parameters in the rule, and (3) to find 
those values of the parameters that minimize net expected losses or 
maximize net expected gains. 

Two general objections to this procedure are: 

1. 'We have no way of knowing whether an assumed form is really a good one, 
even though it may appear plausible. It is clearly preferable to have a pro- 
cedure that requires no assumption as to form ; as we shall see, such a procedure is, 
in f^ct. mathematically available. 

2. Except in the simplest cases, computations required to find expected costi3 
and gains as functions of parameters in the rule and of the current level of supply 
over a period longer than a few years may become quite extensive. 
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The following forms of rules have been suggested as having consider- 
able "plausibility appeal:" 

1. Let the carry-out be a fixed (determinable) proportion of the total supply, or 
of the total supply minus the minimum possible harvest [see Rosenblatt {8)], 
Serious objections to the application of Rosenblatt's results in the determination 
of actual storage policy are outlined in Appendix Note 2. The criticisms there 
may be taken as illustrative of the dangers of assuming in advance a particular 
parametric or functional form for the rule. 

2. Divide stocks into two categories, one for offsetting relatively minor or 
*'normal" ñuctuations in yields and the other, a reserve to be used only in case of 
serious drought, that is, when yields fall below some critical level. The assump- 
tion implicitly underiying such a policy is presumably that the utility- or demand- 
function is discontinuous. Such an assumption, however, can be directlylncorpo- 
rated into the solution outlined, beginning on page 40, without the necessity of 
setting up two categories for stocks. 

Storage rules for which the amount added depends on deviations in size 
of crop from normal,—Another possible form of storage rule which has 
been considered is to make the amount added to storage a function of 
the amount by which the current yearns harvest deviates from normal. 
The simplest function of this kind is a constant proportion. The idea 
underlying such a rule is that we face a certain variability of output 
which we want to transform into a smaller variability of quantity 
utilized. Such a transformation could theoretically be made by thé 
kind of rule suggested.    The objections to such a rule are: 

1. It is operationally and anal3i;ically unsound, in the sense that it assumes that 
the decision as to how much grain should be added to storage this year can be 
made rationally while completely ignoring the amount already in storage. 

2. Since the first few years of operation of the rule may be years of poor crops, 
in which case the rule will call for removing grain from storage, such a rule could 
be put into operation only at a time when existing stocks already are larçe, 
whereas a rule, to be generally useful, ought to be operational under any initial 
condition of supply. Furthermore, determination of the necessary level of initial 
stocks to make the rule workable must be probabilistic, since the initial stocks 
necessary to be completely certain that the rule could be worked for an indefinitely 
long period would be indefinitely large. Moreover, no obvious criterion exists for 
determining what should be the level of probability which one is willing to stipulate 
for the workability of the rule. (For furi;her details, and a concrete example, see 
Appendix Note 3.) 

3. Under a rule of this kind, an error in the estimate of the probability dis- 
tribution of yields or its equivalent, an undetected change in the conditions of 
production, can lead to a system that "runs away.*' For example, if the estimate 
of the mean of the distribution is too low, stocks tend to build up indefinitely, 
whereas if the estimate is too high, stocks tend to decline to zero. 

An approach based on an idealized free market,—Another possible 
approach to the storage problem is to construct a model designed to 
approximate the worlnne of an idealized free market for grains, that 
is, a market in which aU stocks are held by private firms, operating 
under perfect competition and maximizing expected profits. In a 
later section we see that, under certain conditions, the aggregate 
amounts stored in such a market can be calculated, using directly 
the methods presented in that section. Under these conditions, the 
rule becomes a description of market behavior instead of a means 
for decision making. The results can be used either (1) as the basis 
of an optimal rule of storage, assuming that what happens under the 
conditions outlined is desirable for the general public, or (2) as a basis 
for estimating the extent to which aggregate amounts stored under 
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actual (historical) market conditions have deviated from the amounts 
that would have been stored imder the so-called '^ideaP' conditions. 

THE STORAGE PROBLEM STATED MORE PRECISELY 

"Storage'' throughout this discussion means year-to-year carryover, 
the presumption being that distribution of the product among years 
is the serious problem, whereas distribution within a year, given the 
total amount to be utilized during the year, is relatively trivial from 
a policy viewpoint. At the beginning of a given crop year (say on 
October 1 for com, or July 1 for wheat) we know the amount of 
carryover from the preceding year (Ct-i), and we can estimate fairly 
accurately the amount of the crop in that year (Xt).^ The total 
supply (St) is the quantity available for utilization and carryover. 
The problem is to determine what the carryover should be at the 
end of the given year (Ct), given the relevant conditions of demand, 
supply, cost of storage, and the interest rate. The quantity utilized 
(Yt) is, of course, simidtaneously determined, as is the amount added 
to or subtracted from storage (Ct—Ct_i). These relationships are 
expressed by the equations: 

St=Ct-i+Xt (1) 

Yt=St-Ct (2) 

=Ct-i+Xt-Ct (3) 

A "rule of storage,'^ as used here, is simply a function (0t) which 
explicitly states the way in which Ct depends on Ct_i and Xt, that is: 

Ct=et(Ct-i, Xt) .    (4) 

At'this point ^we do not specify anything about the natiu'e of this 
fimctional relationship. Later we see that most, if not all, optimal 
storage rules are nonlinear and that the algebraic expression of the 
relatioiiship is moderately complex. A "storage policy'' for a period 
of n yeaj^ (t=l, . . ., n, where the current year is designated as 1) 
may be defined as a set of storage rules for those years (9i, . . ., On). 
Om* problem, then, is that of finding a "good'' poHcy for a given num- 
ber of years  (n^2).    Storage rules or policies which are optimal 
under stated conditions are designated by a circumflex, thus: 9t or 
(01,  .  . ., 0n). 

We actually may be primarily interested only in what to do in the 
current year (0i), but determination of the best 0i in general depends 
upon 02, . . ., 0n, so they also must be determined. Under the 
assmnption that all relevant conditions and criteria are xmchanging 
through time, sometimes referred to as an assumption of "station- 
arity," we have 0^=02= , . . ad infiniturriy and the problem is to 
determine the best single rule 0, to be apphed each year. 

3 For a list of the important symbols used, see Appendix note 1. Each symbol 
is deñned, however, as it is introduced. 
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SOME SIMPLIFYING RESTRICTIONS 

This study initially was primarily concerned with storage as a 
means of ofiFsetting fluctuations in yield. To simplify the analysis, 
we initially assume that the following are known with certainty: 
(1) The basic demand curve for the grain, (2) the cost of storage for 
various quantities stored, and (3) the acreage to be planted. We 
need not specify that the conditions are the same in each year but 
only that, if they do change, we know how they will change. Ignoring 
random or unpredictable fluctuations in acreage initially can be justi- 
fied in part by the fact that, prior to price support programs, the 
effect on production of changes in acreage for most grains was small 
relative to the effect of fluctuations in yields.'' The effect on optimal 
storage rules of introducing random or unpredictable fluctuations in 
demand or acreage into the solution is discussed on page 51. 

For purposes of facilitating both analysis and discussion, we first 
consider a desirable storage policy for the country as a whole, that isj 
we initially ignore the existence of interregio aal differences and rela- 
tionships. To do this, we set up two forms of restrictions as a frame- 
work for our analysis. The first form, designated as restriction!, can 
be stated in two alternative ways; the second form, designated as re- 
striction II, can be stated in three alternative ways. These alternative 
statements are not necessarily equivalent, but any one of them will 
satisfy the requirement in each case. Nor are these conditions neces- 
sary, but only sufficient; one easily could think of other statements of 
conditions which would satisfy the requirements. 

Restriction I.—Either of the following: 
la: No grain of the kind for which the storage problem is being 

considered, or a substitute therefor, is imported or exported, 
lb : Imports and exports are known in advance (predictable with 

certainty and independent of the amount of storage).    lb of 
course, includes la as a special case. 

Restriction II.—Any one of the foUowing: 
lia: The cost of transporting the grain within the nation is 

zero. 
lib : All of the storage for thé grain is located at a single point 

in the nation, or within a single region within which transport 
costs for the grain are zero. 

lie: All of the grain (1) is produced at a single pointpr within a 
single zero-transport-cost region and (2) is consumed at the 
same or a different single point or within a single zero- 
transport-cost region. 

Although these restrictive conditions are never completely satisfied 
in the real world, they may be approximately satisfied for certain 
grains. If so, application of the results given in the first section should 
give a storage policy that is a reasonably good first approximation to 
the optimal—at least a better approximation than is possible, except 
by chance, by the use of other existing techniques. Approximate 
satisfaction of restriction I, for example, means that unpredictable 

* For further comment on this pomt, and some illustrative data, see Appendix 
note 4. 
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fluctuations in exports and imports are small, relative to total pro^ 
duction or consumption of the grain. Similarly, restriction II is 
approximately satisfied if all but a small portion of the grain is stored 
in one small subregion, or if the relevant cost of transport is small 
relative to the sum of storage cost plus interest charges. For all feed 
grains in the Uüited States, for example, fluctuations in net imports 
in recent years typically have been between 0 and 2 percent of total 
domestic production; and, though production, utilization, and storage 
occur throughout the country, they tend to be concentrated in the 
North Central States, where, for example, more than 80 percent of 
total October 1 stocks of com are typically held. 

Furthermore, biases in the computed storage rules that are caused 
by assuming that both restrictions I and II are true, when, in fact^ 
they are not, are in opposite directions, so that they at least partially 
offset each other. That is, the assuLmption of restriction I results in 
rules which prescribe '^too much'^ storage, since holding exports and 
imports constant means that effective demand for the domestically- 
produced grain is less elastic than it would otherwise be; whereas the 
assumption of restriction II results in rules that typically prescribe 
''too little'^ storage. 

With all the above considerations in mind, a direct application of 
the analysis of this section to the storage problem for total feed grains 
in the United States should give a fairly close approximation to optimal 
storage policy; accordingly, the empirical applications are made to 
those grains. 

Finally, it should be mentioned that, while a complete solution of 
the multiregional storage problem involves a formidable computational 
aad empirical complexity, relaxation of restriction I can be allowed for 
with only a relatively minor modification of the ''model,^* provided 
adequate empirical information is available about foreign demand ■ 
supply, and storage policy.^ 

Naturally, the approach developed here is equally applicable to a 
commodity produced and consumed within a smaller self-contained 
region. ' 

CONDITIONS USED IN DEVELOPING AND APPLYIHÔ 
THE RULES 

As already indicated, the conditions which are relevant and which 
must be estimated prior to the derivation of storage rules are the fol- 
lowing: (1) A discount factor which equals 1/(1+r), where r is the 
interest rate. This is the present value of one dollar due the following 
year, and reflects the fact that whenever commodities are held in 
storage, an amount of capital equivalent in value is unavailable for in- 
vestment elsewhere. (2) The direct cost in dollars of carrying over the 
quantity stored for one year. Naturally, this total depends on the 
quantity stored, though certain fixed costs regardless of quantities also 
may be involved. (3) The total value, measured in dollars, attribut- 
able to the use of the variable quantity available for consumption (Y) 

^ A solution that incorporates foreign trade was obtained and applied to com- 
pute national aggregate storage rules for wheat in an unpublished manuscript 
entitled ''The Storage of Grains to Offset Fluctuations in Yields" by R. L. Gustaf- 
son.   The general approach is summarized in Note 12 in the Appendix. 
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in that year. (4) The probability distribution of yields per acre, since 
we have specified that the acreage is known. 

In some cases it may be more convenient and more illuminating to 
use a marginal value function instead of the total value function. 
For readers unacquainted with calculus, we note that the marginal 
value function, or first derivative of the total value function (assuming 
that the derivative exists), is somewhat analogous to, and in some 
cases may be taken as identical with, a market demand curve, prop- 
erly defined. (See pages 13-15.) Mathematical derivations of 
optimal storage rules for each of these value functions are given, but 
our initial presentation of the solution is in terms of the total value 
function, as the exposition and proofs are more straightforward in 
those terms. 

The meaning of each of these conditions, and problems involved in 
measuring them empirically, are discussed in the following paragraphs. 

The discount joA^tor,—The discount factor is simply a transformed 
expression for the interest rate; but the question arises, What is **the'' 
appropriate interest rate to use? In a free capital market, the appro- 
priate value is the rate of return that the capital resources used in the 
storage program could earn in alternative uses, so the problem is to 
determine or estimate what that rate is. In a situation that involves 
capital rationing, the problem may become more complex, but we 
cannot here go into all the issues involved. One necessary restriction, 
to make the solution feasible, is that the annual discount factor be 
less than imity (that is, the interest rate be greater than zero). In 
the section on applications, we assume a range of possible values of 
the discount factor to obtain an estimate of the effect of such variation 
on the resulting optimal storage rules. 

Storage costs.—The cost of storage is here taken essentially to be 
the amount of monev it costs to store a given quantitv of grain for a 
year. Serious problems of estimation are involved, however, as 
costs vary considerably in different locations and in different types 
of storage facilities, and a national aggregate is desired. The approach 
taken is to assume a range of possible cost estimates in order to show 
the effect of variation of this sort on the storage rules. 

A question may arise as to whether the money cost of storage is by 
itself an adequate measure of the actual net cost to the economy of 
having a certain quantity on hand at a given time. For example, a 
'^convenience benefit'' may accrue from the existence of the stocks 
themselves which, if it exists, should be subtracted from the money 
cost of storage to obtain the actual net cost. The possibility of such 
a convenience benefit may be explained as follows: 

It has been observed tJiat when stocks of grain on hand are low, 
farmers and processors sometimes hold grain mr use at a future date 
even though they know (via the futures market) that they could 
obtain similar grain at the future date at a cost less than the current 
value of what they hold. The resulting monetary loss, as it is incurred 
voluntarily, is presumably offset by a convenience benefit accruing 
from the holding of the grain. [See Working (14)-] If benefits to 
the general public correspond to these private convenience benefits, 
and if they could be suitably aggregated, then the resulting total 
convenience benefit should be subtracted from the money cost of 
storage to obtain the net cost of storage.   It is possible that, by this 
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adjustment, the cost of storage, for low levels of stocks, would bè 
considerably altered. In the empirical applications given in this bul- 
letin, we do not attempt to estimate these concepts, but rather follow 
the simple expedient of taking as given a fixed level of minimuni 
working stocks, below which the carryover is assumed never to fall. 
The computed storage rules, then, refer to quantities of carryover 
above the minimum working stocks. This procedure is equivalent 
to assuming that when stocks fall below a certain level the convenience 
benefit of stocks on hand becomes indefinitely large, whereas for 
stocks above this level, the added convenience benefit is neghgiblo. 

It should be noted that the *'convenience benefit" being discussed 
here is conceptually quite separate from and independent of the gain 
to the general public concept defined on p. 17 et seq. The former 
accrues from the existence of the stocks themselves, whereas the 
latter arises from the year-to-year adjustment (by means of the 
storage rules) of quantities utilized in accordance with changes in 
supply and demand conditions. 

The total value function.—This states the value in dollars, to the 
general public as a whole, of utilizing the quantity Y of the grain 
in the vear t. The problems involved in the statistical determination 
of a value (or utility) fimction of this sort from market data are highly 
complex, and a completely rigorous solution, applicable to the real 
world, probably is impossible. Nevertheless, if any storage policy is 
to be adopted, some value function must be decided upon before the 
policy can be justified or made rational. In other words, before we 
(that is, the general public) can decide how best to distribute quan- 
tities of the grain utilized among years, we must decide what is the 
value to us of utilizing alternative quantities in each of the years. 
Some degree of arbitrariness or statistical approximation may be in- 
evitable, but a policy which is based on even an approximate value 
function is certainly likely to be better than one which ignores the 
problem of evaluation. Furthermore, by making use of alternative 
explicit value functions, we can determine the effects on storage 
policy of making alternative choices, or of errors in the estimate, of 
the value function. 

In the paragraphs following, we give what appears to be the most 
practicable way of objectively determining, at least approximately, 
a function which states the value in dollars, to the general public as 
a whole, of utilizing a given quantity of grain in a given year. But 
it should be emphasized that the method of solving the storage prob- 
lem which is discussed later does not depend on this particular choice 
of a value function, but is sufficiently general to permit the incorpo- 
ration of a wide variety of possible functions. For example, if the 
Government should decide that the storage program should be oper- 
ated so as to maximize the expected total revenues of grain producers, 
we could, by simply setting "total value" equal to "total revenues of 
grain producers" in our solution, obtain storage decision rules which 
would be "optimal" in that sense. 

We define the suggested total value function by first defining a 
particular kind of market demand curve, or market price-quantity 
relation, for the grain, as follows: The quantity of resources used in 
the production of the grain are assumed given (constant), but the 
quantity of grain produced varies from year to year, owing to purely 

446979°—58 -^ 
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noneconomic forces, in particular, the weather. The grain produced, 
whatever the quantity, is thrown on the market, and the maximum 
price is determmed at which that entire quantity can be sold and con- 
sumed. That is, no year-to-year carryover is allowed. For all points 
along the resulting price-quantity relation, the total productive capac- 
ity of the economy, exce'pt for the quantity of the grain which becomes 
available, is assumed given (constant); and the price level of all goods 
and services other than the grain is also held constant. However, 
allocations of ^particular other resources and relative prices of other 
goods and services are not assumed to be fixed, but are allowed to 
jshift in response to the changes in the quantity of the grain, to the 
extent that the market equilibrating forces in the economy do in fact 
•cause them to shift within the crop year.® 

The restdting price-quantity relation is defined as the marginal 
value function for the grain; it gives the per-unit value, in terms of 
other goods and services, which the general public, operating through 
the market, places on the grain when the total quantity is Y. By 
this definition, we essentially make this value not directly dependent 
on the income redistribution effects of the changes in the grain supply. 
This appears to be the most feasible procedure, the alternative being 
io adopt arbitrarily some interpersonal or intersectoral weighting, 
euch as would be implied by setting total value equal to total revenue 
.of -grain producers. 

Total value then can be defined as the area under the marginal 
value (or demand) curve between O and Y. However, in most cases 
some quantity, which can be taken as a constant, exists below which 
the quantity utilized never falls. Conceptually, this quantity may 
be close to zero for items that are relatively unessential in the diet 
of either human beings or animals, and considerably above zero for 
dietary essentials with few substitutes. Alternatively, we may look 
on the existence of this minimum quantity as simply an empirically 
observed fact. Since we never can obtain observations regarding 
the nature of the total value when the quantity is below this minimum, 
we take these values as unknown constants which can be conveniently 
ignored since, in the maximization process by which the optimal storage 
tules are obtained, they have no effect on the results. We may, 
therefore, define the total value function as ^Hhe increase in real national 
{or regional) income which is attributable to increasing the amount 
utilized of the grain from the minimum value of Y {Ymir^ to Y itself, 
when other ^productive capacity is given. That is, total value is the area 
under the marginal value curve between this minimum and Y.^ The 
total value can be thought of as the value of other goods and services 

^ Note that the demand curve so defined differs slightly from the usual defini- 
tions of the (Marshallian) demand curve in that we hold neither real income nor 
money income and other prices constant along the curve. The demand curve 
also is defined for a relatively "short run," and hence tends to be less elastic 
than a long-run demand curve. 

7 This is readily seen by considering the effect on real income of a small change 
in the quantity of the grain, say dz, from an initial quantity z; the resulting 
change in real income is the change in quantity times the per-unit value. Adding 
up these small changes in real income between Ymin and Y gives the total value. 
In economic literature, this value frequently is referred to as "total social value." 
It should be noted that "total value," as used here, does not mean "total revenue," 
or price times quantity consumed; it is, rather, the entire area under the marginal 
value function. 
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which;sDciety is willing to give up in order to utilke the quantity Y 
rather, than, the minimum quantity. 

. An empirical estimate qf the marginal value function for feed grains,-^ 
We:n.e;xt iconsider the problem of empirically estimating the marginal 
value fimction for aU feed grains. We allow approximately for' 
effects of changes in other productive cap9,city and the price level in 
the usual way, namely, by including appropriate income and price 
indexes in the €strmation model. The main düEculty in the case of the 
feed graiQs arises from the facts that (1) an important factor in deter- 
mining within-year demand for feed graias is the beginning-of-year 
level of livestock inventories on farms, so that to estimate the within- 
year price function it is necessary to include this variable, which 
may, for this purpose, be treated as predetermined;but (2) an impor- 
tant effect of a change in a given year's supply of feed grains is to 
change the following year's livestock inventories, so that to determine 
the total effects of year-to-year changes in the grain supply, such 
effects on Kvestock iaventories should be taken into accoimt. 

For example, the 5-equation model of the feed-livestock economy 
developed'by Hildreth and Jarrett (ô)^ usiag their limited information 
estimates of the coefficients, indicates an elasticity of livestock 
products produced with respect to quantity of feed grains fed of 0.22. 
However, if their five equations are reduced to a siagle one for which 
quantity of livestock products sold is made a function of quantity of 
feed grains fed, quantity of protein feeds fed, and the predetermined 
variables, the resultiag elasticity of livestock products sold with 
respect to feed grains fed is —0.03, which does not differ significantly 
from zero. A similar result is obtained from the 4-equation model 
developed by Foote (3). The difference between 0.22 and -^0.03 
(ot zero) piresumably represents the effect on the following year's 
livestock inventories of a change in a given year's quantity of feed 
grains fed. The corresponding coefficients, using the Hüdreth- 
Jarrett least squares estimates, are 0.35 and 0.14, respectively. 

If we take these year-to-year adjustments in livestock inventories 
into account, the price of feed grains in a given year is a function not 
only of the quantity utilized in the given year but also of the quantities 
utilized in preceding years. Usiag agaiQ the Hüdreth-Jarrett model, 
and holding the predetermined variables (except livestock inventories) 
constant, one can determine the net effect, taking into account the 
resulting changes in the other endogenous variables, of a change in 
a given year's quantity of feed grains fed on the following year's 
price of feed grains. Using the limited information estimates, the 
result is: 

log Pt= -1.47 log Yt+ 0.43 log Yt_i (5) 

where Pt is the price of feed grains in year t and Yt is the quantity of 
feed grains fed in year t. The lag effect actually extends back for 
more than one year, of course, but for our purposes consideration 
of the 1-year lag is sufficient. The least squares estimates of ..the 
coefficients give: 

log P,= -1.51 log Yt+ 0.43 log Yt-i (5.1) 

These results seem to indicate that one ought to make the marginal 
value a function of lagged quantity utiHzed as well as current quantity 
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utilized. This can be done fairly readily in a formal solution to the 
storage problem, but the resuJting computational requirements 
become much greater, and the resulting storage rules more coniplicated. 
The problem may be stated as follows: What we actually have is a 
function of the form 

P,=aoYt-'Tt'Li (5.2) 

whereas we would like to have, if possible, a fimction of the form 

Pt=boYr' (6) 

which,/or purposes oj storage policy, is equivalent, or at least approxi- 
mately so, to what we actually have. Fortimately, an eqmvalent 
function can be obtained since, for purposes of storage poHcy, we are 
concerned with the interrelationships among P and Y in successive 
years, that is, among, say, Pt+i, Pt, Yt+i, and Yt? 

8 The truth of this is demonstrated by considering the following two sets of 
relations: 

lî Pt+l==aoYt4-iYt' 

Pt    =aoYr^^Y?Li 

11: Pt+i=boYtti 

Pt    =boYt-^ 

Take the ratio of Pt+i to Pt in each case, giving, say, Ri and Rn respectively. 
Then take the elasticity of this ratio with respect to Yt in each case, giving 
respectively: 

I: ai(l—e)+a2 

II: bi(l-e) 

where e is the elasticity of Yt+i with respect to Yt, that is, the percent change in 
YH-> which occurs as a result of decreasing the carryover in year t by one percent 
of Yf It follows that the elasticity of the ratio R with respect to Y» is the same 
in cases I and II if 

The value of e depends on the values of Yt+i and Yt, and on the storage rule to be 
applied in year t+l» but the value of e is always negative or zero. Hence, 
values of bi which make II approximately equivalent to I for storage policy pur- 
poses are given by 

ai<t>i<ai+a3 

For all feed grains in the united States, it can be shown that 

0>e>-2 
sa that 

ai+^<bi<ai+aa 

Based on the Hildreth-Jarrett limited information coefficients, 

1.62<bi<1.9a 
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Probabüüy distribution of output.—The probability distribution of 
output is estimated from observations on the variation in yield per 
acre in past years, making due allowance for trends. Such data are 
available from the records of the Crop Reporting Board for major 
crops back to 1866. Ideally, provision would be incorporated to 
allow for the way in which year-to-year variations in acreage planted 
are determined m a free market by the interrelationship of supply 
and demand factors. As httle definite information is at present 
available about supply functions for grains, this refinement has not 
been made. If better information on the economic determinants of 
acreage planted become available, such knowledge can and should be 
incorporated into the solution directly. In the meantime, the results 
obtained may be regarded as first approximations, the adecjuacy of 
which depends on the accuracy with which acreage planted in future 
years can be predicted. A fiu-ther justification for initially emphasiz- 
ing the fluctuations in yield per acre and neglecting variations in 
acreage planted is that, except in years for which acreage allotments 
are in effect, the major proportion of the variation in year-to-year 
output is due to variations in yield. A final justification is that 
acreage for many crops can be controlled or predicted, whereas yields 
cannot, and a storage program of the sort being considered here can 
be looked on primarily as a poHcy designed to mitigate the economic 
effects of noncontrollable and nonpredictable fluctuations. 

DEFINITION OF AN OPTIMAL STORAGE POLICY 
Having defined and briefly explained the conditions used in deriving 

the storage rules, we now proceed to define the criterion of optimality 
which the rules are intended to satisfy. First, the gain incurred in 
any given year, that is, the year t, is defined as the total value of the 
grain utilized minus the cost of storage for grain to be carried into the 
next year. Some readers may feel that, in the definition of gain, the 
total value of the grain that would be utilized in the absence of any 
storage should be subtracted out. But the effect of this change in 
the definition is simply to introduce a set of constants into the system, 
a condition that has no effect on the maximization process by which 
we obtain the storage rules. That is, if the latter concept is thought 
of as a "net gain,'' the storage rules that maximize total gain are iden- 
tical to those that maximize net gain. From a mathematical stand- 
point, it is easier to work with the simpler concept of total gain. 

Footnote 8—Continued 
Using the least squares coefficients, 

1.66<b,<1.94 

Coefficients like bi are referred to as "flexibilities.'' That is, the flexibility of 
the marginal value function is the absolute value of the elasticity of marginal 
value with respect to quantity utilized. We mainly are concerned with deter- 
mining an "upper limit estimate of the flexibility of the marginal value function 
since, as might be expected, the higher the flexibility, the higher are the resulting 
optimal storage rules and storage levels. 

Use of the term "flexibility" is convenient to emphasize that in this context 
quantity utilized is treated as the independent variable and marginal value or 
price as the dependent, rather than vice versa. That is, the flexibility of a price 
function is the inverse of the absolute value of the "elasticity" of the same function 
treated as a demand curve. 
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We now wish to consider the factors that determine thé total gain 
in any year. The quantity utilized depends on (1) the initial carryover 
from the previous year, (2) production in the current year, and (3) the 
carryout in the particidar year. But if we consistently follow a set of 
ïstorage rules, the carryout depends on the particular rule that is 
Adopted. Since, with any given marginal value function, the total 
value depends on the quantity utilized, this value in turn depends on 
the iaitial supply, which is equal to the initial carryover from the 
preceding year plus production in the current year, and the storage 
rule. Likewise, total storage cost, for any given level of interest 
rates and cost per unit stored, depends on the amount stored. Thus, 
the total gain from storage depends on the initial supply and our 
storage rule. 

In thinking about some year in the future, production cannot be 
estimated in advance but depends on the particular yield that happens 
to prevail. In connection with variables of this sort, in cases where it is 
felt that the variable can be treated as though subject to a probability 
distribution that is known or can be estimated, statisticians use a con- 
cept known as an ^'expected value.'' To take an example, the expected 
yield, in this sense, equals the sum obtained by multiplying each 
possible yield by its probability of occurrence, and adding the result- 
ing products. 

Considering any given future year, then, we can think of applying 
a given storage rule to each possible total supply in that year. The 
total supply depends, of course, on the carryover from the preceding 
year, acreage planted, and yield. The total gain from storage can 
then be computed for each possible total supply, or equivalently, 
taking acreage as given, for each possible carryover from the preced- 
ing year and each possible yield. Next, for each possible carryover 
from the preceding year, the ''expected gain'' in the given year is 
obtained by multiplying the gain corresponding to each possible yield 
by the probability of occurrence of that yield, and adding the resulting 
products. Thus, the expected gain in any given future year, under 
given conditions, depends on the storage rule applied in that year, 
and on the carryover from the preceding year. Of course, the carry- 
over from the preceding year depends on the total supply and the 
storage rule applied in that year, and so on back to the current year. 
It should also be noted that the expected gain in any given future year 
is not, in general, equal to the gain that would be computed by apply- 
ing the given storage rule to the expected yield (or expected supply) 
in that year. 

We now define a new variable: The gain in the current j^ear plu? 
the sum of expected gains for all relevant years in the future discounted 
back to the current year. The size of this variable, under given 
conditions, depends only on the supply in the current year and the 
particular set of storage rules being applied. Finally, we define the 
optimal storage policy as that set of storage rules that maximizes 
this sum of discounted expected gains, for any given initial supply. 

In the paragraphs that follow, total values that relate to all possible 
levels of utilization are referred to collectively as the total value 
function, and costs of storage that relate to all possible levels of storage 
are referred to collectively as the cost of storage function. The term 
''function" carries the same connotation when used elsewhere.   Mak- 
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ing use of this concept, the criterion of optimality is the following: 
Given (1) the probability distribution of yields, (2) the total value 
functions, and (3) the cost of storage functions for an n-year period 
(n^2), the optimal storage policy for the period is defined as that 
set of storage rules which maximizes the sum of discounted expected 
gains over the period, where the gain for each year is the total value of 
the quantity utilized minus the cost of storing the amount carried 
over. ' 

METHOD OF SOLUTION 
The solution to the grain storage problem presented here is an 

adaptation of a solution to an inventory problem developed by 
Dvoretzky, Kiefer, and Wolfowitz (2), Some reformulation of the 
framework and proofs was required to adapt them to the grain storage 
problem. In the inventory problem, the administrator at the be- 
ginning of each period is given an initial stock, a cost of ordering 
function, a cost of storage fimction, a probability distribution of 
demand (which may be based on historic data), and a penalty func- 
tion which depends on the quantity of unfulfilled demand; he must 
decide how much to order. In the grain storage problem the important 
random variables are future harvests, and the decision is taken with 
respect to how much of currently available supply should be currently 
utilized and how much carried over for future use. Another difference, 
which may be important in applications in that it leads to trouble- 
some discontinuities, is that in the grain storage case, unlike what may 
be possible in the inventory case, we must exclude the possible ex- 
istence of negative carryovers.^ Finally, it may be mentioned that 
the mathematical development pertaining to use of the marginal 
value fimction (pages 44-59 and related Appendix notes) is original 
here. 

We start by introducing what is perhaps the crucial aspect of the 
proposed solution, that is, the device which permits us to avoid (1) 
the necessity of assuming in advance anything about the forms of the 
storage rules and (2) the laborious computation of expected values 
as functions of the parameters of the forms adopted. We have seen 
that the determination of the optimal rule for any year depends on the 
rules to be followed in succeeding years. Hence the only way to avoid 
making assumptions about rules in succeeding years is to start with 
the year that has no succeeding year, namely, the last year of the 
period, and work backward.    We do just that. 

Under certain conditions, the length of the relevant period, that is, 
the ''time horizon,^' must be assumed in advance.    However, in cases 

Ö The interested reader also should refer to Arrow, Harris, and Marschak (i); 
these authors chronologically preceded, and laid the conceptual groundwork for, 
the work of Dvoretzky,.Kiefer, and Wolfowitz (2), and in their work the concepts 
of a utility (or penalty) function and of a controlled stochastic process were for 
the first time introduced into the English-language literature on the inventory 
problem. 

The mathematical formulation of the problem and its solution, as presented in 
this bulletin, are intended to be complete and sufficient for our purposes. Qur 
presentation is more elementary than that of Dvoretzky et al. (2), and the 
results thereby lack some generality. However, some of the ways in which the 
solutions may be generalized are indicated in later sections and in the Appendix, 
and the reader, once he understands the basic concepts involved, should be able 
to provide the modifications required for any particular application. 



20     TECHNICAL BULLETIN   1178,  U.  S.  DEPT.  OF AGRICULTURE 

where the relevant conditions, that is, the value function, the cost of 
storage function, the interest rate, and the probability distribution of 
output, can be assumed to be the same in each future year, it is not 
necessary to make any assumption about the relevant number of 
years. The relevant criterion of optimality for these cases is the 
maximization of the sum of discounted expected gaius in all future 
years, and, as might be expected, it turns out that the optimal storage 
rule is identical iu each year. The mathematical method then itself 
converges to this single optimal rule which is applicable every year. 

To illustrate the procedure, we first consider the general case, that is, 
the one for which the storage rules can vary from year to year. (1) 
We first determine the rule for the nth or last year in the following 
way: For all possible total supplies at the start of the year, we find 
that carryout that maximizes the gain. This is our storage rule for 
that year. Given the rule, the maximum gaia depends only on the 
size of the initial supply. (2) We now make use of the statistical 
concept of an ''expected'' gaia (see page 18). The expected maximum 
gain depends only on the size of the initial carryin, since we multiply 
all possible levels of production by their respective probabilities of 
occurrence. The initial carryin for the nth year is the same as the 
carryout for the year n—1. For every possible level of supply iu the 
year n—1, we find that carryout that will maximize the sum of the 
gain in that year and the discounted maximized expected gaia in year 
n. By the same reasoning as used previously, the expected maximum 
value of this figure depends only on the size of the carryout in the 
year n—2. (3) Using the same procedure, we continue back to year 
1, whereupon we have determined a set of storage rules, one for each 
year, which maximize the sum of discounted expected gains for the 
entire period. 

Cases where the value function, cost of storage function, interest 
rate, and probability distribution of output can be assumed to be the 
same in each future year are called cases of "stationarity.'' In such 
cases, as already indicated, the optimal storage rule is also the same 
in each year. This single optimal rule can be shown to be the unique 
solution of a single equation.^® The computations required to obtain 
the solution, however, are, at least in the general case, of the iterative 
type analogous to those used for cases of nonstationarity. The main 
difference is that, in cases of stationarity, the iterations are continued 
until convergence is achieved. 

Such an assumption of stationarity is not as restrictive or unrealistic 
as might at first appear. For computational purposes, we assume 
that 3ie conditions are imchanging in all future years. But the 
optimality of the resulting rule, as apphed to the current year only, 
does not require that the conditions in fact remain imchanged in all 
future years; aU that is really required is that the same storage rule 
appHes in the next succeeding year. Such a condition is satisfied if, 
for example, the storage rule for the next succeeding year is also 
calculated assuming stationarity and using the same estimates of the 
conditions as are used this year. Of course, if it is known in advance 
how the conditions will change in future years, such knowledge should 
be incorporated directly into the solution. 

" For mathematical proofs, see pages 40-47 and 74-80. 
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Complete mathematical solutions, using both the total and the 
marginal value functions, are given beginning on page 40. These are 
followed by a discussion of some special mathematical relationships 
of interest to the economic analyst. As these sections require a 
rather advanced knowledge of calculus, we first show the residts of 
applying these methods to obtain storage rules for feed grains, th^n 
summarize some general conclusions with respect to storage that can 
be developed by examining the mathematical nature of the rules, 
and finally show a method of obtaining approximations to the rules 
that requires only a use of direct arithmetic operations. 

APPLICATIONS TO FEED GRAINS 

In this section results of some computations of optimal storage 
rides for ''corn equivalents'' of aggregate feed grains for the United 
States are shown. The feed grains are here taken to be corn, oats, 
and barley. Sorghxma grains were omitted because of a lack of 
adequate information on acreage planted for grain. Ideally, sorghum 
grains used for feed should be included, but the effect on the final 
results would be neghgible, as production of sorghum grains in the 
United States averages about 3 percent of the production of total 
feed grains. Bushels of oats and barley were converted into com 
equivalents on the basis of their respective relative number of poimds 
of digestible nutrients per bushel, as follows: 

Grain Corn equivalent 
of one bushel ^ 

Corn  1.000 
Oats  . 488 
Barley    _    _  . 806 

1 Slightly different corn equivalents are being used currently by the United 
States Department of Agriculture. 

The total supply of com equivalents in each year was obtained by 
converting the supply of each grain, in bushels, into corn equivalents, 
in accordance with the above ratios, and adding. A different set of 
conversion factors should perhaps have been used for that part of 
the grain used for purposes other than as a Hvestock feed. 

In determining storage rules for two or more grains simultaneously, 
it would be theoreticaUy preferable to set up a model incorporating 
explicitly both economic substitution relations and joint probabihty 
distributions of output, rather than to use fixed ratios of substitution 
as done here. The formal solution for such a model is analogous to the 
solution for the multi-regional problem discussed on page 60, with a 
comparable increase in computational difficulties. Another problem 
is that of empirically estimating the substitution relations. Analyses 
by Foote (S) and Meinken (7) indicate that the price-elasticity of 
demand for corn alone, holding quantity of other feed grains fed 
constant, is not significantly different from the price-elasticity of 
demand for all feed grains. The corn equivalence ratios used here are 
roughly equal to the average price ratios between the grains in recent 
years. 

446979"—58 4 
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AU applications assume stationarity (see page 20), and independ- 
ence. Since acreage planted is thus assumed constant, the data and 
computations were made more manageable by taking all quantities on 
a per acre basis. Thus the probability distribution of output is the 
probabUity distribution of yield in bushels per planted acre; total 
supply, quantity utihzed, and carryover are in bushels per acre; and 
marginal value and marginal cost of storage are in dollars per bushel 
per acre. All of these quantities can be translated into approximate 
national aggregates by multiplying by 140 million acres, the approxi- 
mate average number of acres planted to corn, oats, and barley in 
recent years. 

The probabUity distribution of yields was estimated from records 
of the Crop Reporting Board of the actual variabihty of yields in the 
period 1901-1950 as follows: For each year, total production of each 
grain was converted to its corn equivalent, and the result was added 
to get the corn equivalent of aggregate production of feed grains. 
This figure was divided by the total acreage planted to corn, oats, and 
barley in the given year to get the aggregate corn equivalent yield per 
acre.^^ A 5-year moving average of a 9-year moving average was 
fitted to the resulting yields, omitting the drought years 1934 and 1936, 
to obtain an estimate of the trend. If Xt is the actual yield in year t 
and Tt, the trend value for that year, we let 

and 
dt-xt—Tt 

Zt=30+(K)[dt+(dt/Tt)30] 

(7) 

where 30 was an estimated yield for 1954. Thus, to estimate the 
variability of yields in future years, an arithmetic average of the actual 
and the relative deviation from trend in past years was used. This 
assumption is conservative, that is, it probably gives a higher estimated 
variabihty than may actually occur, since the trend yield has in- 
creased substantially over the period. The resulting Zt's were then 
grouped into one-bushel intervals centered on integers, giving the 
following distribution: 

Yield per planted acre Yield per planted acre 
Relative 

frequency 
Relative 

frequency 
Range Midpoint 

X 
f(x) Range Midpoint 

X 
f(x) 

. Bushels Bushels Bushels Bushels 
18.5-19.5  19 0.02 27.5-28.5  28 a 06 
19.5-20.5  20 .02 28. 5-29. 5_.-- 29 .22 
20. 5-2L5__-- 21 .00 29. 5-30. 5___- 30 .20 
21.5-22. 5  22 .02 30. 5-31. 5_— 31 . 14 
22.5-23.5  23 .00 31. 5^32. 5.._- 32 . 10 
23.5-24.5  24 .00 32. 5-33. 5__-- 33 . 10 
24.5-25.5  25 .02 33.5-34.5  34 .00 
25.5-26.5  26 .02 34.5-35.5  35 .02 
26. 5-27. 5 27 .06 

11 For 1901-1928, acres planted for each grain were estimated by multiplying 
acres harvested by the weighted average ratio of acres planted to acres harvested 
in 1929-50. 
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The mean of the distribution is 29.46 bushels per acre; the standard 
deviation is 3.03 bushels per acre. As is typical for yields of crops, the 
distribution is skewed to the left. 

The assumption of stationarity in computation of storage rules so 
far as yields are concerned may be looked upon as an assumption that 
average or normal yield per acre in future years will be 29.46 bushels. 
The discrepancy between 29.46 and 30 is mainly due to the omission of 
the drought years 1934 and 1936 in obtaining the trend. A sharp 
upward movement in the trend yield started about 1933, reflecting in 
part the introduction of hybrid seed corn. Since use of hybrid seed 
reached almost 100 percent within the main areas of production by 
1950, it seemed reasonable to assume, when this study was begun, 
that the trend would level out at something shghtly above the average 
yield for corn equivalents of feed grains from 1949 through 1955 of 
28.7 bushels. A continued upward trend in more recent years is 
beheved to reflect progress in techniques of production and increased 
use of fertilizer, irrigation, and other inputs of this sort. In applying 
the storage rules, an upward trend of this kind could be allowed for by 
changing the assumed mean yield from time to time while retaining as 
a measurement of variation around the mean the long-term historic 
pattern based on deviations from trend. 

One way to justify an assumption of stationarity in the computa- 
tions is to assume that any future trend in supply (acreage or yield) 
will be partially in response to, and partially offset by, the trend in 
demand, so that the resulting trend in the real price of the grains will 
be small enough to be neglected for storage pohcy purposes. The 
real price of corn over the last 80 years has foUowed a sHght upward 
trend, amounting to an average of roughly 0.6 percent per year. 
Such a trend, if assumed to continue into the future and incorporated 
into the computations of the storage rules, would have a relatively 
small effect on the results. 

In aU appHcations except one, the marginal value function is 
assumed to be linear. This is mainly a computational convenience, 
since empirical demand studies for corn and feed grains have generally 
shown that a linear relationship gives about as good a fit to the data as 
a logarithmic or constant-elasticity relationship (for example, see 
Foote, Klein, and Clough (4), Hildreth and Jarrett (6), and Shepherd 
(10), (11)). Computations in some representative cases that have 
used the two alternative assumptions indicate that the optimal 
storage rule using a logarithmic marginal value function differs Httle 
from the optimal rule using a linear marginal value function with, of 
course, the same estimates of the other conditions and the same average 
flexibility of marginal value in each case. 

Kesults presented here are the computed optimal storage rules for 
aggregate feed grains, under alternative assumptions about the condi- 
tions, that is, the annual discount factor, the marginal value function, 
the marginal cost of storage, and the distribution of yields. The 
subscripts on the d^s designating the rides do not stand for years or 
iterations, but for alternative optimal (stationary) rules, apphcable 
imder the respective sets of conditions specified.   (See table 1.) 

The apphcation intended to approximate conditions in an ideaHzed 
free market is based on a price elasticity of demand for aggregate feed 
grains, T/O, of —0.50.    This is the elasticity at Y=Yo=30 bushels per 
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acre. This is consistent with, though sHçhtly conservative with re- 
spect to, the upper limit estimate of the flexibihty of the marginal value 
function, eo= —1/170=1.94, obtained in footnote 8 on page 16 based 
on the Hildreth-Jarrett (5) estimates of the coefficients after allowing 
for an annual lag effect. It also is consistent with results reported by 
Foote, Klein, and Clough (^), where the elasticity of demand for 
"total feed grains or possibly for total feed concentrates'' is estimated 
to be between —0.40 and —0.50, based on year-to-year changes. The 
market price at the quantity consumed when Y=30 bushels per acre 
was taken to be $1.50.    This gives a market price function 

p(Y)=$1.50-$0.10(Y-30)=$4.50-$0.10(Y) (9) 

where Y is in bushels per acre and p(Y) is a mathematical symbol 
representing the marginal value function. 

To determine the effects of the possible existence of losses to the 
general pubhc attributable to fluctuations in utihzation not measured 
by changes in market price, computations were carried through using 
marginal value functions with flexibilities of €o=2.5 and €o=3.33 (the 
corresponding elasticities of demand being 770= —0.40 and r¡o=—0,30 
respectively).^^ 

The corresponding marginal value functions are 

p(Y)=$1.50-$0.125(Y-30)=$5.25-$0.125(Y) (10) 
and 

p(Y)=$1.50-$0.167(Y-30)=$6.50-$0.167(Y) (11) 

respectively. 

Effects on the optimal storage rule of changing the assumptions 
about the marginal cost of storage, 7', and the annual discount factor, 
a, also were determined. In section A of figure 1, êi, 62^ 63 and ^4 are 
optimal storage rules that result under different assumptions about 
7' and ce, when 770=—0.50. The values 7'=$0.10, reflecting a mar- 
ginal storage cost of 10 cents per bushel per year, and a=0.95, 
equivalent to an interest rate of 5 percent, are estimates of the ap- 
proximate actual cost of storage and discount factor, respectively, 
under conditions that existed in the early 1950's. As indicated in 
figure 1, the alternative assumptions were 7'=$0.04 and a=0.98, 
with computations made for eacn of the four possible combinations. 
In section B of figure 1, effects on the optimal storage rule of different 
assumptions about 7' and a when 770= —0.30 are shown. 

Effects of changes in one condition in general are not the same for 
different values of the other conditions, as the interaction effects are 
fairly complicated. Hence the optimal storage rule usually must be 
calculated anew for each change. The calculations, however, in some 
cases are simplified by making use of the equivalence relations dis- 
cussed beginning on page 49. 

^ Reference usually is made to the inverse-flexibilities, that is, to elasticities, 
since to most readers a direct comparison to the usual concept of price elasticity 
of demand probably is more meaningful. 
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FEED GRAINS:* OPTIMAL CARRYOVER 
RULES PER ACRE 

For Specified Values of y'and erWhen £7= 3 Bushels per Acre, and ¡o is Linear 

CARRYOVER (BU.)-C 

12 

8 

12 

8 

28 

SECTION A:T\O^-0.50 

RULE     y      CK 

0.10    0.95 

SECTION B:VO-30 

65   0.10   0.95 

TOTAL SUPPLY (BU.)-S 

36        38        40        42 

41CORM.   OATS  AMO   BARLCY.   CORN   COUIVALËHT 

U.S.  OEPARTMEMT  OF   AGRICULTURE NEC.  4107-57(4)      AGRICULTURAL   MARKETIMG  SeVVICE 

Figure 1.—^AJ^ would be expected, optimal carryovers are larger when cost of 
storage and charges for interest are relatively low. (A high value for a eorre- 
ßponds to a low interest rate.) 
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Section A of figure 2 shows the effects on the optimal storage rule, 
6, of different assumptions about the elasticity of p, 770, when the 
marginal cost of storage 7' and discount factor a are held at their 
approximate actual values of $0.10 per bushel and 0.95 respectively. 
Here, rjo was taken as equal to —0.50, —0.40, and —0.30. Section 
B shows the results of similar changes when the cost of storage and 
the discount factor are taken at 7'=$0.04 per bushel and «=0.98. 

Section A of figure 3 indicates the effects of changing the estimate 
of the variance of the probability distribution of yields when the 
other conditions (p, 7' and a) are fixed at tbeir approximate free^ 
market values (770=—0.50, 7'=$0.10 per bushel, a=0.95). Ô1 is the 
optimal rule under the estimated actual probabiUty distribution F, 
with standard deviation <7o=3.03 bushels per acre; Og is the optimal 
rule under a probabihty distribution G, which has the same mean 
and shape as F, but for which (rQ= (5/3)0-0=5.05;^^ and êgiis thö 
Optimal storage rule if there were no variabihty whatever in future 
yields {<T=0)y^ Section B presents results imder similar conditions 
when 7'=$0.04 per bushel and «=0.98. 

Figure 4 shows the effects of a linear assumption about the marginal 
social value function p, as compared with results if we assume p to 
have constant elasticity, where the assumptions about the other 
conditions, 7', a, rjo and F, correspond to their actual approximate 
values. 

In figure 5, all the computed optimal rules are shown to facilitate 
inter-comparisons. 

The optimal storage rule ê(S) for each set of conditions was computed 
over the range of values of total supply S, in bushels per acre, from 
0 to 50 (50 being 1% of a normal crop), although the charts show values 
of S only up to 42. The computed numerical values of all the rules are 
given in table 1, along with the conditions applied in each case. 

The equilibrium level, C*, also is given in table 1 for each rule. An 
exact definition of C* is given on page 56. However, it may be viewed 
as the level toward which, for any given initial carryover, the expected 
carryover in the next year tends. It also can be thought of as a 
sort of average level of carryover aroimd which the yearly carryovers 
over a long period tend to fluctuate under the given rule d. It is 
particularly useful to enable the analyst to make rough comparisons 
between "average'' carryover levels that result under optimal storage 
rides that satisfy the criteria specified in this bulletin and carryover 
levels recommended by other writers, or that satisfy other criteria. 

'^Minimum working stocks'' are the aggregate quantity of grain 
which farmers, dealers, processors, and so forth keep on hand to facil- 
itate their day-to-day operations, no matter how small the total avail- 
able supply. All carryovers shown here are quantities in excess of 
minimum working stocks, and the latter should be added to the 
amoimts indicated if a total figiu-e is desired.   For com equivalents 

1' The factor 5/3 was chosen mainly for computational convenience in using the 
equivalence relations discussed on p. 50, together with other computations using 
F.   This avoided the necessity of actually computing G and carrying out a solu- 
tion independently with integrations over G. 

"1* This is essentially the case discussed by Williams (,13). 
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FEED GRAINS* OPTIMAL CARRYOVER 
RULES PER ACRE 

For Specified Vo/ues of i?, '^\\9n tr -   3 6us/ie/i per Acre, ani p is linear 

CARRYOVER (BU.)-C- 

12 

8 

12 

SECTION A:/ = 0.10 ANDo<s 0.95 

RULE 
-0.50 

SECTION B:y = 0.04 AND <:^= 0.98 

*CORN,  OATS,  AND BARLEY.   CORN  COUIMALENT. 

28  30   32   34   36   38   40   42! 

28   30   32   34   36   38   40   42 
TOTAL SUPPLY (BU.)-S 

b S. DEPARTMENT OP AGRICULTURE NEC. 4108-57(4)      AGRICULTURAL MARKETING SERVICE 

Figure 2.—When the marginal value function is extremely inelastic, as for Ja, the 
optimal carryover is larger than when it is less inelastic. 
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FEED GRAINS:*OPTIMAL CARRYOVER 
RULES PER ACRE 

For Specified Values of a WhenlJ^'-O.SO and p is lineor 

CARRYOVER (BU.)-C 

12 

8 

12 

SECTION A-.yO.lO ANDo<'0.95 

RULE 

SECTION B:/-0.04 ANDC^-0.98 

TOTAL SUPPLY (BU.)-S 

42 

écORN, "OATS  4N0  BAKLCY.  CORN  COUlVALfMT. 

U. ».  OCPARTMENT OF  AGRICULTURE NEC.  4109-57(4)      AGRICULTURAL   MARKETING  SERVICE 

Figure 3.—As would be expected, the greater the variability in exi)ected produc- 
tion, the larger is the optimal carryover. A comparison of th? relative distance 
between ds and ö« in section A and between èio and ßn in section B indicates 
that the expected variabilitv in production has a greater effect on the optimal 
rule when storage costs and interest rates are relatively low, as in section B, 
than when they are relatively high, as in section A. 
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FEED GRAINS: OPTIMAL CARRYOVER 
RULES PER ACRE 

When p is Linear or Curvilinear and y'^ 0.10,0^. 0.95, 1)0» -0.50, 

and a m 3 Bushels per Acre 

\RRYOV! ■R (BU.) -C 
A 

Ö1 y- 

RULE 
9, 
ê,2 

P 
Linear 

Constant elasticity y 
y \. 

^ 

.."^ 

^ 

y^ 

28      30       32      34       36      38       40      42 
TOTAL SUPPLY (BU.)-S 

'CORN,  OATS AND  BARLEY.  CORN EQUIVALENT, 

Ü, S. DEPARTMENT OP AGRICULTURE NEC.  4)10-57(4)      AGRICULTURAL  MARKETING  SERVICE 

Pigure 4.—When the marginal value function is of constant 3lasticity, the optimal 
carryover for small supply is higher and for large supply is lower than under 
similar conditions when the function is linear. In each case, however, the 
storage rule is curvilinear. 

of all feed grains, minimum working stocks in this study were taken to 
be about 200 million bushels, or about 1.4 bushels per acre. 

This value may be 50 to 100 million bushels lower than a minimum 
that would provide a reserve imtil quality grain is available from the 
next crop. The national aggregate equilibrium level including working 
stocks for each storage rule also is given in table 1. This is obtained 
by multiplying the per acre value for C* by 140 million acres and add- 
ing to the result 200 million bushels. To convey some idea of the pos- 
sible range or variability of carryovers under each rule, a value C** 
is given for all rules except^g and ^n, where C** is the level of carryover 
that would be reached under the riile at the end of two '^bumper-crop" 
years, that is, two successive years each with a yield of 35 bushels per 
acre, starting with an initial carryover of C*. C** also is given on a 
national aggregate basis including working stocks. The rules them- 
selves are presented in terms of bushels per acre, rather than as a 
national aggregate, to make them directly applicable to situations 
where acreage planted differs. 

All computations were carried out to the closest 0.01 bushel per acre. 
Some slight inaccuracy may be introduced in making the inversions 
by linear interpolation. The final results should be accurate to within 
0.02 or 0.03 bushel per acre, and are almost certainly accurate to within 
0.05 bushel per acre. These limits do not, of course, allow for errors 
in the estimates of the given conditions 7', a, p, and F. 
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TABLE 1.—Corrij oats and barley, corn equivalent: Optimal carryover rules under specified conditions and related quantities ' I 

Unit 
Rule—5 

Item 
1 2 3 4 5 6 7 8 9 10 11 12 

Condition : 
Elasticity—»jo  -0.50 -0.50 -0.50 -0.50 -0.30 -0.30 -0.40 -0.50 -0.50 -0.50 -0.50 -0.50 

Dol . 10 . 10 .04 .04 . 10 . 04 . 10 . 10 . 10 .04 .04 . 10 
Discount rate—a  .95 .98 .95 .98 .95 .98 .95 .95 .95 .98 .98 .95 
Variability of yields—<r  Bu  3.03 3.03 3.03 3.03 3.03 3.03 3.03 5.05 0 5.05 0 3.03 

Optimal carryover per acre when 
supply per acre equals— 

28  __-do  0 0 0 0 0 0 0 0 0 0 0 0 
29 -  __.do  0 

0 

0 

0 

0 

0 

0 

.33 

0 

0 

.07 

.77 

0 

0 

0 

0 

0 

0 

.33 

1.03 

0 

0 

0 

30  ---do  0 
31    ---do  0 .34 .46 .99 .55 1.50 .25 .28 0 1.75 .46 .33 
32 .  ---do  .55 .93 1.07 1.69 1.19 2.25 .84 .90 .39 2.48 1.01 .87 
33  --.do  1.13 1.57 1.74 2.41 1.86 3.02 1.47 1.53 .90 3.23 1.70 1.43 
34__.  ___do  1.74 

2.38 

2.22 

2.90 

2.42 

3.12 

3. 15 

3.90 

2.57 

3.29 

3.80 

4.60 

2. 12 

2.80 

2.18 

2.85 

1.44 

1.98 

3.98 

4.75 

2.41 

3.14 

2.00 

35  ---do  2.57 
36  ---do  3.05 3.61 3.85 4.67 4.02 5.40 3.50 3.55 2.66 5.53 3.92 3. 16 
37  ---do  3.74 4.32 4.60 5.45 4.77 6.20 4.22 4.27 3.34 6.30 4.64 3.77 
38  ---do  4.44 5.05 5.35 6.24 5.54 7.01 4.95 4.98 4.04 7. 10 5.50 4.39 
39  _    do  5. 16 

5.89 

5.80 

6.55 

6. 12 

6.89 

7.02 

7.82 

6.31 

7.09 

7.83 

8.66 

5. 70 

6.46 

5.70 

6.43 

4.73 

5.45 

7.90 

8.70 

6.31 

7.14 

5.03 

40  --do  5.67 
41 ,_ --.do  6.63 7.31 7.67 8.63 7.88 9.50 7.22 7.17 6.18 9.50 7.97 6,31 
42    --do  7.38 8.07 8.46 9.44 8.68 10.34 7.99 7.93 6.95 10.30 8.80 6.95 
43  ---do  8. 14 8.84 9.26 10.27 9.48 11. 21 8.77 8.70 7.72 11. 12 9.65 7.60 
44   __.do   8.89 

9.67 

9.62 

10.41 

10.06 

10.87 

11. 10 

11.94 

10.30 

11. 12 

12.08 

12.95 

9.56 

10.36 

9.47 

10.23 

8.50 

9.27 

11.93 

12.75 

10.50 

11.35 

8.27 

45.-    --.do  8.93 
*VT 9^r'T3fVr9<-V'mTW9V1f3TVmTsr ...do.-,.. 10,45 IJ.. 20 1Î, ß9 12,79 U. 94 13. S3 11, le n,02 10.00 13.58 1^22 9.00 

CO ,o 

00 

d 
CD 

> o 

Ö 



47    
48_-    
49------ --- - 

--do  
---do  
...do  

11.23 
12.02 
12.82 

13.63 

31.04 
.3 

4.1 

242 
774 

12.00 
12.81 
13.63 

14.45 

30.42 
.5 

5.3 

270 
928 

12.52 
13.35 
14. 19 

15.03 

30.25 
.6 

5.7 

284 
998 

13.64 
14.50 
15.35 

16. 22 

29.49 
1.4 
7.8 

396 
1,292 

12.78 
13.62 
14.47 

15.32 

30.11 

6.1 

298 
1,054 

14.72 
15.61 
16.51 

17.42 

2a 90 
2.7 

10.1 

578 
1,614 

11.98 
12.80 
13.62 

14.45 

30.58 
.4 

5.0 

256 
900 

11.78 
12.58 
13.37 

14. 17 

30.54 
.4 

5.0 

256 
900 

10.84 
11. 65 
12.46 

13.29 

31. 24 
0 

200 

14.40 
15.25 
16.08 

16.93 

2a 53 
3. Ö 

10.4 

620 
1,656 

13.09 
13.96 
14.83 

15. 70 

30.17 
0 

200 

10.28 
11.00 
11.69 

50    ...  _    do  12.38 
Related quantity: 

Per acre: 
k2    
C*_.   c**  - 

...do  

...do  

.. do  

30.32 
.4 

4.3 
As a National aggregate: ' 

C*. -    Mübu... 
...do  

256 
c**   802 

 0 
1 The marginal value function is assumed to be linear for all rules except the last, 

where constant elasticity is assumed. See text for exact definition of symbols shown 
In stub. 

» The value of 8 (supply per acre) below which the optimal carryover (exclusive of 
minimum working stocks) is zero. 

t Obtained by multiplying the per acre value by 140 million acres, and adding 20 
million bushels, the assumed minimum working stocks. 

CO 
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FEED GRAINS;* OPTIMAL CARRYOVER 
RULES PER ACRE 

Under Alternative Conditions Specified in  Table I 

CARRYOVER (BU.)-C 

10 

32        34        36        38 
TOTAL SUPPLY (BU.)-S 

"•CORN, OATJ ANO BARLEY, CORN EQUIVALENT. 

U. S.   DEPARTMENT OF  AGRICULTURE NEC.   4111-57(4)        AGRICULTURAL   MARKETING  SERVICE 

Figure 5.—Similarities, other than level, are greater than are differences even for 
the wide variety of conditions that apply to the 11 rules for which computations 
have been made, and for which the marginal value function is linear. 

SOME GENERAL CONCLUSIONS WITH RESPECT TO 
STORAGE 

From the equations whose solution gives the optimal storage rule 
imder conditions of stationarity (see page 46), we may derive the 
following conclusions (see pages 48-55): 

1. If the marginal value function is the same as the market price function, the 
amounts which would be stored under an optimal governmental storage program 
are exactly the same as the amounts that would be stored in the aggregate by 
private firms in a socalled "idealized" free market.    Such a market is one having 
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perfect Oööipetition, in the economic sense, and in wMch j»ivate finns àeek to 
maximize tiieir expected discounted profit." 

2. If the marginal cost of storage is a constant, so that the cmt of storifig each 
additional bushel of grain is the same regardless of whether large or small quan- 
tities are stored, and other conditions are the same as in (1) above, then thé ex- 
pected cost to the Government of operating an optimal storage program is zero, 
under these circumstances, profits from the storage operations are just large 
enough to offset the costs of storage. 

3. If the marginal value function is linear, the computations are somewhat 
simpler. However, as indicated by figure 4, the resulting storage rule is not 
linear, even in this case. 

4. As illustrated in figure 3, the general shape (though not the position) of an 
optimal storage rule computed under the assumption of no variability in future 
yields is, at least in some cases, a fairly close approximation to the rule computed 
with the actual distribution of yields under the same conditions of total value, 
cost of storage, and interest rate. 

Rules based on no variability in yields can be computed fairly easily (see pages 
33 and 52). Moreover, it can be shown that the initial assumption in the iterative 
process can be any arbitrary storage rule and the iterations still wiU converge to 
the optimal rule. Furthermore, the closer the initial assumption is to the ultimate 
optimal rule, the fewer are the iterations required. These fact« permit us to use 
rules that have been computed under the assumption of zero variability in jaelds 
for two purposes: (a) To reduce the number of iterations required for the process 
that leads to the actual optimal rule with yield variability included in the solution 
by providing reasonably accurate first approximations as a starting point, and (b) 
to provide rough but easily obtained measures of the effects on the optimal rule 
of making changes in the estimates of the other conditions. 

5. When the quantity to be stored is plotted on the vertical scale and the total 
supply is plotted on the horizontal scale (as in figures 1 through 5), the optimal 
quantity to be stored increases continually with increasing supply except that, 
when supplies are smaller than some specified amount, the quantity to be storea 
(in excess of minimum working stocks) is zero. The approximate point at which 
the curve cuts the supply axis can be determined rather easily (see paces 36, 64). 

6. Use of (4) and (5) above gives a convenient method for obtaining a first 
approximation to the optimal rule under a specified set of circumstances. The 
following three steps are involved: (a) Compute the rule with zero variability 
in yields; (b) compute the approximate point at which the curve cuts the supply 
axis when yields vary in their normal way; and (c) shift the curve based on no 
variability in yields horizontally to the left on the graph so that it cuts the supply 
axis at the indicated point. This gives an approximation to the rule when yields 
vary in their normal way. Use of this approach is described in detail in thé next 
section. 

A METHOD FOR OBTAINING APPROXIMATIONS TO THE 
RULES 

To illustrate the procedure, approximations to optimal rules uûdér 
two sets of conditions are obtained. The conditions are those used 
for rules ^i and $Q as shown in table 1. As noted in the preceding 
paragraph, the first step is to compute rules using the specified condi- 
tions but based on an assumed yield variabiHty in future years of 
zero. To avoid possible confusion with the accurately-calculated 
rules given in table 1, we refer to these rules as A and B, respectively, 
and label the corresponding rules obtained when yields are assumed 
constant as A' and B', respectively. 

To facihtate the computations, we show in table 2 the eonditióíis 
that relate to these rules. Items in the first three rows are the same 
as the comparable items in table 1 ; those in the next two rows were 
obtained by the method discussed on page 24 (see equations (9) and 

" For a more precise statement of the conditions under which this conclusion 
is valid, see pages 48-49. 
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(11)).    The last item is obtained by making use of the constant term 
and the slope coefficient for the marginal value fimction in con- 
nection with utilization of 29.46 bushels per acre, the assumed average 
yield.   For rule A, this computation is made in the following way: 

$4.50-(0.10X29.46)=$1.554 

TABLE 2.—Conditions used in obtaining optimal rules A and B 

Item 

Marginal cost of storage, 7', dollars per bushel  
Discount factor, a, 1/(1+interest rate)  
Elasticity when utilization is 30 bushels per acre, 170  
Marginal value function : p (Y) = a—bY 

Constant term, a  
Slope coefläcient, — b  

Marginal value when utilization equals 29.46 bushels, 
po, dollars  

0.04 
.98 

-.30 

6.50 
-. 167 

1.590 

Estimating rules when yields are assumed constant,—The computa- 
tions for rules A' and B', respectively, are shown in table 3. Num- 
bered items in the remainder of this paragraph relate to the columns 
of that table. (1) The number of the row. The symbol i is used to 
indicate the row in subsequent columns. Note that i=0 for the first 
row. (2) The discount factor raised to the (i+1) power. (3) The 
sum from j=0 to j=i of the discount factor raised to the j"* power. Any 
number raised to the 0**^ power equals 1. Hence, for i equal zero, 
the nimiber in this column is 1. The item in the second row equals 
l + (0.95)i=1.95. The item in the third row equals l + (0.95)i + 
(0.95)^=2.852. The series can be conveniently obtained by insert- 
ing a 1 in the first row and adding the item from thei—1 row of the 
second column to the cumulative total to obtaiu the item in the i^ 
row of the third column. (4) Column (2) times the marginal value 
when utilization equals 29.46 bushels per acre. (5) The marginal 
storage cost times column (3). (6) Column (4) minus column (5). 
(7) The reciprocal of the absolute value of the slope coefficient for 
marginal value (1/b) times colunm (6). (8) The constant in the 
equation for marginal value divided by the absolute value of the 
slope coefficient (a/b) minus column (7). For rule A', the quotient is 
obtained as follows: 4.50/0.10=45.00. (9) Total supply equals 
carryover plus column (8). Each entry in this colunm is obtained 
(^r the corresponding entry iu coliman (10) has been computed. 
Column (10). Carryover equals supply in the preceding row (column 
9) minus the assumed average yield of 29.46 bushels per acre. 

In carrying out these computations, we first fill in all values in 
column (1), MI items in column (2), and so forth through column (8). 
Items in column (2) can be obtained by successively multiplying the 
item in the preceding row by the discount factor. We have already 
described a convenient method for obtaining the items in column (3). 
Items in columns (4), (5), and (7) are obtained by multiplying the 
items in a previously computed column by a constant.   Items in 
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columns (6) and (8) are obtained by subtraction. The item in the 
first row of column (10) always is zero. Given this value, we can 
obtain a value for the item in the first row of column (9). From this, 
we obtain the item in the second row of column (10). This permits 
us to obtain a value for the item in the second row of colunm (9). By 
repeating this process, all items in. columns (10) and (9) are obtained. 
The amoimt of clerical work involved is not great. Successive itera- 
tions are continued until a sufficient range in observations for supplies 
and carryovers are obtained. Thus, 5 points are computed in table 3 
for nde À' and 10 for rule B'.^^ 

TABLE 3.—Com, oats, and barley: Computations involved in obtaining rules A* 
and B' i 

Rule A' 

(1) (2) (3) (4) (5; (6) (7) (8) (9) (10) 

Bow «(i+D 1 (2)X (3)X (4)-(5) (6)X a/b— (8)+ (10) (9)i-i- 
(i) Sai 

J-0 PO y 1/b (7) s 29.462 
c=ö(s) 

0...- 0.950 1.000 1.477 0.100 1.377 13.77 31.23 31.23 0 
1  .902 1.950 1.402 .195 1.207 12.07 32.93 34.70 1.77 
2  .857 2.852 1.332 .285 1.047 10.47 34.53 39.77 5.24 
3._- .814 3.709 1.264 .371 .893 8.93 36.07 46.38 10.31 
4  .773 4.523 1.201 .452 .749 7.49 37.51 54. 43 16. 92 

Rule B' 

0._- .980 1.000 1.559 .040 1.519 9.11 29.89 29.89 0 
1  .961 1.980 1.526 .079 1.447 8.68 30.32 30.75 .43 
2  .941 2.941 1.494 .118 1.376 8.25 30.75 32.04 1.29 
3.__- .922 3.882 1. 465 .155 1.310 7.86 31. 14 33.72 2.58 
4  .904 4.804 1.437 .192 1.245 7.47 31.53 35.79 4.26 
.5__- .886 5.708 1.408 .228 1.180 7.08 31.92 38.25 6.33 
6  .868 6.594 1.379 .264 1. 115 6.68 32.32 41. 11 8.79 
7  .851 7.462 1.352 .298 1.054 6.33 32.67 44.32 11.65 
8  .834 8.313 1.325 .333 .992 5.95 33.05 47.91 14.86 
9  .817 9. 147 1.298 .366 .932 5.59 33.41 51.86 ia45 

1 See text for computations involved in each column. 
2 Based on values in the preceding row. A zero always is used in this column 

for row 0. 

Results from these computations are shown in figure 6, along with 
those indicated when yields are assumed to vary in a normal way, 
based on data for Bi and èe from table 1. A' is roughly parallel to A, 
and B' to B, indicating that a drastic change in one's assumption 
about the variabihty of yields does not change the slope of the optimal 
storage rule very much, although the position of the curve does change. 
The reader also should note that the difference between A and A' or 
between B and B' is much less than the difference between either 
A and B or between A' and B', confirming the view that assumptions 

1* For the mathematics underlying these computations, see pages 52-54 and 
Appendix note 9. 
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FEED GRAINS: OPTIMAL 
CARRYOVER RULES 

Based on 140 Million Planted Acres 

CARRYOVER (MIL. TONS)-C  

30 

20 

10 

100     no 120 130 140 150 160 
TOTAL SUPPLY (MIL. TONS) -S 

*CORN, OATÎ AMD BARLEY. CORN EQUIVALENT. 

U.S.  DEPARTMENT   OP   AGRICULTURE NEC.  4112-57 (4) AGRICULTURAL   MARKETING  SERVICE 

Figure 6.—An approximate method for obtaining optimal storage rules which 
requires only simple arithmetic operations gives results that are nearly iden- 
tical to those obtained by the complete mathematical technique. The true 
rules are labeled A and B and the corresponding approximate rules, A" and B". 
A' and B' were obtained as an intermediate step. 

about the variability in yields have less effect on the optimal rules 
than do changes in assiunptions about other conditions. 

Estimaiing tke supply below which no grain should he stored when 
yields vary.—^This section describes a relatively simple method that 
can be used to approxLmate the supply below which no grain (in excess 
of minimum working stocks) should be stored when yields vary in 
their normal way. j'his point is referred to here by the symbol k. 
To obtain this approîdmation to k, it is first necessary to calculate a 
function L and a constant M. L is a function of k itself, the form of 
the function dependiiag on the probability distribution of outputs. 
M is a constant, calculated from the marginal value function, average 
output, the marginal cost of storage, and the discount factor. 

We nrst obtain a ta,ble showing the values of L that are associated 
with specified values of k. The values of k are taken at the lower 
class limits of the intervals for yield per planted acre shown in the 
tabulation on page 22. Values of L are obtained by making use of 
the data shown m the tabulation. They can best be ob tamed by 
starting with the largest value of k and working backward. The 
computations are shown in table 4. Numbered items in the remainder 
of this paragraph relate to the columns in that table. (1) Lower 
limit of the class intervals for yields shown in the tabulation on 
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page 2 starting with the last or largest yield. This is the value 
of k. (2) Cumulative frequency of the yields, starting with the 
largest yield (see page 22). (3) Column (1) times column (2). 
(4) Midpoint of the class interval for yields (see page 22). (5) Fre- 
quency for that yield (see page 22). (6) Cumulative product of the 
items in column (4) times those in column (5). (7) Column (6) minus 
column (3). This is the value of L. The reader will note that 
computations for some values of k are omitted. Computations 
involved for these rows are clear from those shown in the table. 

TABLE 4.—Corriy oatSj and barley: Computations involved in obtaining Lfor specified 
values of k ^ 

? (2) 
Sf (x) 

(3) 
(1) X (2) 

(4) 
X 

<5) 
f (X) 

(6) 
S (4) X (5) 

(7) 
L 

(6)-(3) 

34.5  0.02 
.02 
. 12 
.22 
.36 
.56 

.98 
1.00 

0.69 
.67 

3.90 
6.93 

10.98 
16. 52 

19.11 
18.50 

35 
34 
33 
32 
31 
30 

20 
19 

0.02 
.00 
. 10 
.10 
. 14 
.20 

.02 

.02 

0.70 
.70 

4.00 
7.20 

11.54 
17.54 

29.08 
29.46 

0.01 
33.5__      .03 
32.5          . 10 
31.5        .27 
30.5  .56 
29.5  1.02 

19.5  9.97 
18.5        -    - 10. 96 

1 See text for computations involved in each column. 

The next step is to obtain a value for M. This is done by use of 
the following formida. The constant term and the regression coeffi- 
cient referred to are for the marginal value function shown in table 
2. The absolute (or positive) value of the regression coefficient is 
used. The discount factor and the marginal cost of storage are given 
in table 2, and the average production is the mean of the distribution 
of yields shown on page 22. 

M=(Discount factor) (average production) 

. (1—discount factor) (constant term) . (marginal cost of storage) 
¡regression coefficient! |regression coefficient! 

(12) 
For rule A, use of this formula gives the following: 

M=(0.95)(29.46)- 

For rule B, M=29.88. 

(1.00-0.95)(4.50)    (Q>lQ)^3i 21 
(0.10) (0.10) 

By making use of M, the discoimt factor, and an estimate of the 
slope of the optimal rule we now obtain a second set of values that 
shows a relationship between k and L.   The value of k that we desire 

446979»--58- 
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is the value of k that satisfies each of these relations. The second 
relation between k and L is obtained from the formula: 

k=M—(discoimt factor) (slope)L (13) 

In the computations shown in the next two paragraphs, we use an 
approximate value of 0.6 for the slope of the storage rule. 

For rule A, formula (13) gives the following: 

k=31.24-(0.95)(0.6)L 
=31.24-0.57L 

By comparing this formula with the values of k and L shown in 
table 4, we see that the value of k that will satisfy both equations Hes- 
between 31.5 and 30.5 bushels. For these values of k, L in table 4 
has a value of 0.27 and 0.56, respectively. We use these values of 
L in the formula shown above and solve for k. Results obtained are 
31.09 and 30.92 bushels, respectively. We now make a greatly en- 
larged graph with k on the vertical scale and L on the horizontal 
scale, values for k of 31.5 and 31.09 are plotted opposite a value 
for L of 0.27; values for k of 30.5 and 30.92 are plotted opposite a 
value for L of 0.56. The points for which k equals 31.5 and 30.5 
are connected with a line, as are the points for which k equals 31.09 
and 30.92. The value for k at the intersection of the two lines is the 
desired Ê. For rule A, this is 31.01 bushels and for rule B, 29.14 
bushels. 

A modification can be made in estimating k, namely that of using- 
for the slope of the optimal rule the slope obtained under similar con- 
ditions when yields are assmned to be constant. As the function is a 
curve, a decision has to be reached as to the point on the curve for 
which the slope is to be computed.    Two points appear relevant: 
(1) The point closest to k, and (2) the point closest to the average 
supply. The average supply can be obtained by adding to the con- 
stant production the average carryover.    For rule A this is 29.46+ 
0.3=29.76. As this point is below k, we can compute the slope for 
only one segment of the ciu^e, namely that shown by the first 2 rows 
of table 3. The average slope for this segment equals (1.77—0)/ 
(34.70—31.23)=0.51.    When this slope is used in formula (13), a 
value for k of 31.05 bushels is given, almost the same as the true value 
of 31.04 (see table 1). 

For rule B, the average supply equals 29.46+2.7=32.16.    This is; 
somewhat above k. Hence, two sets of computations were made, one 
for which the slope was estimated over the segment of the curve 
shown in the first 2 rows of the second section of table 3 and the other 
over the second, third, and foiu'th rows, as the average supply is just 
about at the midpoint of this segment. The average slope in the first 
case was 0.50, and in the second case, 0.67. When these values were 
used in the formula, estimates for k of 29.33 and 28.86 bushels, re- 
spectively, were given, compared with the true value of 28.90. 

Results of estimating K when the estimates are based on the several 
different ways of estimating the slope of the optimum rule are tabu- 
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lated in table 5. The results obtained suggest that an efficient way 
to obtain this value is to use as an estimate for the slope the slope for 
the rule when yields are assumed not to vary measiu'ed at a point 
close to the average supply. By using this approach and the general 
method for obtaining the rule when yields are assmned not to vary 
described beginning on page 34, a close approximation to the rule 
can be obtained. Mathematical techniques required to develop these 
computational methods and to show just what the various steps 
mean are described on pages 54-55 and in Appendix Note 10. 

TABLE 5.—Com, oats, and barley: Estimates of k by specified methods, actual and 
as a difference from the true value 

Method of estimating slope of 
optimal rule 

Estimate of îc 

Actual value for 
rule— 

B 

Difference from 
true value for 

rule— 

B 

Arbitrary value of 0.6  
Same slope as for rule when jâelds are 

assumed not to vary measured at the 
point closest to— 

% -    
Average supply  

Bushels 
31.01 

31.05 
31.05 

Bushels 
29.14 

29.33 
28.86 

Bushels 
-0.03 

.01 

.01 

Bushels 
0.24 

.43 
-.04 

Fined results when yields vary.—^The actual rules obtained by the 
several methods are shown in figure 6. The notation is the same as 
that given in the text, but it may be helpful to the reader to review 
briefly the methods used in obtaining them. Rules labeled A and B 
were obtained by use of the full mathematical procedure based on the 
yield distribution shown in the tabulation on page 22 and the other 
variables shown in table 2. Data that relate to these rules in terms 
of bushels per acre are shown in table 1 imder rules $i and êe, respec- 
tively. For the chart, these were converted to million tons, assuming 
that 140 million acres need to be planted to the 3 feed grains to meet 
utilization requirements when yields are at their average level. The 
supply range shown on the chart goes to a maximum somewhat above 
the maximum supply of the four feed grains on record when research 
on this study was completed.^^ 

Rules A' and B' are based on assumptions similar to those used for 
rules A and B, respectively, except that yields in future years are 
assumed to be constant at their average level. Computations in- 
volved in obtaining these rules, in terms of bushels per planted acre, 
are shown in table 3.   Rules A" and B'' were obtained hy using the 

17 Namely, a supply of 153 million tons and a carryover of 31 million tons for 
the marketing year beginning October 1950. New records were set for the years 
beginning in 1954, 1955, and 1956. In the last named year, supply was 174 
million tons and the carryover, 43 million tons. 
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values computed for rules A^ and B', respectively, adjusted in such 
a way that the curves pass through the point on the supply axis 
equal to the value of k shown in the last row of table 5. Methods 
by which the values in table 5 were obtained are discussed on pages 
36-39. As for the other rules, conversions from bushels per acre to 
million tons also were made. 

It is evident that, particularly for the assumptions used in connec- 
tion with rule B, the approximations obtained by the last approach 
are nearly identical with the rules obtained by applying the complete 
mathematical technique. 

MATHEMATICAL SOLUTIONS 
Some of the symbols used in the mathematical solution have been 

introduced in earlier sections. As they were not necessarily defined in 
strict mathematical terms, it now appears desirable to repeat the defini- 
tions, making use of additional rigor where required. 

As indicated on page 11, the conditions which are relevant and 
which must be estimated prior to the derivation of storage rules are 
the following: (1) The discount factor a (equal to 1/(1-fr), where r is 
the interest rate), (2) the cost of storage, (3) the conditions of utiliza- 
tion (demand), and (4) the conditions of production (supply) of the 
grain. The latter three sets of conditions are conveniently handled by 
setting up the following fimctions: 

7t(C): the cost (in dollars) of carrying over the quantity C in the 
year t; 

ôt(Y): the total value to the general public (measured in dollars) 
attributable to the utmzation of the quantity Y in year t; 
and 

Ft(x): the probabiUty distribution of output x in year t. 
As an alternative to the use of the total value function 5, we may, 

if Ô is diflFerentiable, use the marginal value function pt(Y), defined as 
the derivative of ôt(Y). For many purposes, use of the marginal value 
function p turns out to be more convenient and more illuminating 
than use of the total value function 5. However, our initial presenta- 
tion of the solution is in terms of the 5 function, since the exposition 
and proofs are more straightforward in those terms. 

Problejms j-elating to the determination and estimation of these 
fujactional relationships were discussed in earlier sections. To specify 
the criterion of optimaUty, first, ''the gain" incmred in year t, W*, 
is defined as the total value of the grain utihzed minus the cost of 
storage, that is: 

Wt=5t(Yt)-Tt(Ct) (14) 

=5t(St~Ct)-7t(Ct) (15) 

since the quantity utilized, Y*, equals the total supply, St, minus the 
anipiuat carried over, Cf 

As indicated on page 9, a "rule of storage'' is a function (^t) which 
explicitly states the dependence of Ct on Ct_i and Xt, that is: 

Ct=öt(Ct-„ Xt) (4) 
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A ''storage policy'' for a period of n years (t=l, . . ., n, where the 
current year is designated as 1) is defined as a set of storage rules 

If we consistently follow a set of storage rules, the total gam in any 
year depends on the initial supply and our storage rule. In thinking 
about a year in the futm-e, say year t, Xt is unknown, so we make use 
of its probabihty distribution Ft(xt). By using these probabiHty dis- 
tributions we can, for a given set of storage rules, obtain an expected 
value for Wt, namely EWf That is, given the probability distribu- 
tions of output Fa, . . ., Ft,if ^1, . . ., öt are known, we could con- 
ceptually, if not practically, find EWt hj a (t—^l)-tuide integration 
over F2, . . ., Ff Now let Vi,„ be the sum of expected gains iii 
years 1, . . ., n discounted back to the year 1. If the annual dis- 
coimt factor is a constant a (0<a<l), then the discount factor appH- 
cable in year 1 to values occurring in year t is a*"^ 
so that 

Via.=Wi+ûEW2+ûiEW3+ .   .   .   +c^-^EWn (16) 

For given F2, . . ., Fn, Yi^ is a function of Si and ^1, . . ., ^n, ¿nee 
EWt is a function of Si and (9i, .   .   ., of 

We now define the optimal storage poHcy as that set of rules du 
.   .   ,, dn which maximizes Vi,n for any Si. 

The solution based on the total value function,—^First rewrite equation 
(15), to simplify the notation, as: 

Wt=Wt(St,a) (15.1) 

That is, the gain in any year is a function of total supply and carry- 
over. 

For every possible value of Sn in the nth year, find Cn to maxi- 
mize Wn(Sn, Cn). This givcs Cn as a function of Sn, and that function 
is en, the optimal storage rule for the n*** year.^^ With d^ thus deter- 
mined, the maximized gain in the n*^ year is a function of Sn alone 
and may be designated Vnji(Sn). 

Proceed back to the year n—1.   From equation (1), 

Sn=Cn-l+Xn (1.1) 

where Xn (from the viewpoint of year n—1) is a random variable with 
probability distribution Fn(Xn).   To get the expected value (in year 

18 With the cost of storage function and the total value function both mono- 
tonically increasing, C^ always equals zero. This result is not necessary, how- 
ever, to what follows. In particular, if it is decided that for some reason stocks 
should be at some specified level, say Cn, at the end of a specified n-year period, 
this value of Cn may simply be inserted into the solution, and the procedure out- 
lined then leads to the maximum-gain or least-loss program for bringing stocks 
to that level. For the case of stationarity, where the criterion is to maximize 
the sum of discounted expected gains in all future years, the situation is different: 
Cn may be set at any arbitrary value (zero is usually as convenient as any), and 
the solution, that is, the optimal stationary storage rule, is independent of, or 
completely unaffected by, the value so set; in this case, the value of n is also 
unspecified: the computational iterations are simply continued until convergence 
is achieved. 
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A A 

n—1) of the gain in year n (as maximized by ^J, we integrate Vn^» 
(Cn-i+Xn) over the probabihty distribution Fn(xn), leaving a function 
of Cn-i alone.    That is, 

EVn^(Cn-i + xJ=Q„_i(Cn-i) (17) 

This expression represents the expected (maximized) gain in year n 
as a fxmction of carryover in year n— 1. In year n— 1, then, for every 
possible value of Sn_i, we find the value of Cn_i to maximize the gain 
in year n—1 plus the discounted expected gain in year n. That is, we 
maximize 

Vn-l, n(Sn-l, C^-O^Wn_i(Sn_i, Cn-l)+aQn-l(Cn-l) (18) 

This gives Cn-i as a function of Sn-i, and that function is 6^-1, the 
optimal storage rule for year n—l. With ên-i thus determined, the 
sum of maximized expected gains in years (n—1, n) (discoimted to year 

n—1) is a function of Sn-i alone, and may be designated Vn_i, n(Sn-i). 
Proceed back to year n—2.    From equation (1), 

Sn_i = Cn-2 + Xn_i (1.2) 

To get the expected value (in year n—2) of the sum of the gains in years 
(n—l, n) (discounted to year n~l, and maximized by ên_i, en), we 

integrate Vn_i, n(Cn-2+Xn-i) over the probabihty distribution Fn_i 
(Xn-i), giving a function of Cn-2 alone, say On-2(Cn-2). In year n—2, 
then, for every possible value of Sn_2, we find the value of Cn_2 to 
maximize the gain in year n—2 plus the discounted expected sum of 
gains in years (n—l, n).    That is, we maximize 

Vn_2,n(Sn-2,Cn_2)=Wn-2(Sn-2,Cn-2)+aQn-2(Cn-2) (18.1) 

This gives Cn-2 as a function of Sn-2, and that function is ên-2, the 
optimal storage rule for year n—2. With dn-2 thus determined, the 
sum of maximized expected gains in years (n—2, n—l, n) (discounted 

A 

to yearn—2) is a function of Sn_2 alone, and may be designated Vn_2,n 
(Sn-2). 

The general procedure now can be seen for determining the optimal 
storage rule in year t, èt(l:^t<n), once the optimal rules in suc- 
ceeding years êt+i, . . . , ÔQ are determined. The sum of expected 
gains in years (t+1, . . . , n)  (maximized by êt+i, . . . , en,  and 

discounted to year t+1) is a known function of St+i, say Vt+i,n(St_|.i). 
Since by equation (1) 

St4-i=Ct+Xt+i (1.3) 

where (from the viewpoint of year t) Xt+i is a random variable with 
the probability distribution Ft+i(xt+i), the expected value (in year t) 
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OÍ Vt4.i,n is obtained by integrating Vt+i,n(Ct+Xt+i) over that proba- 
bility distribution, giving a function of Ct alone, say Qt(Ct). Then, 
ior every possible value of St, we find the value of Ct which maximizes 
the gain in year t plus the discounted expected sum of (discounted, 
maximized) expected gains in years (t+1, . . . , n). That is, we 
maximize 

Vt3(St,Ct)=Wt(St, Ct)+aQt(Ct) (18.2) 

This gives Ct as a function of St, and that function is et, the optimal 
storage rule in year t. It also gives the maximized sum of expected 
¿gains in years (t, . . . , n) (discounted to year t) as a fxmction of St, 

say Vt.n(St). 
Continuing back to year 1 (the current year), we have thus deter- 

mined the optimal storage rule for each year êi, . . . , en, and also 
the maximized sum of discounted expected gains in all the years, as a 

function of Si, Vi,n(Si).^® The computational operations must be 
•carried out numerically, that is, by using discrete values of the various 
functions corresponding to selected discrete values of their respective 
«arguments. The essential reason for this is the existence of dis- 
continuities caused by the restriction of C (carryover) to non-negative 
"values. The author, at least, has been unable to find any analytical 
**'tricks,^' even under the most simplifying assumptions about the 
iorms of the relevant functions, which make possible a non-numerical 
»computational procedure. 

We next consider modifications in the procedure when the conditions 
Are assumed to be stationary. By ''stationarity'^ is meant the condi- 
tion that the annual discount factor a and the three functions, cost 
of storage 7, social value 5, and distribution of output F, are the same 
in every year; by '^dependence'' is meant the condition that each 
of the three fimctions is unaffected by any variable other than its 
'explicitly stated argument (C, Y or x respectively). The solution 
outlined above assimies independence in the functions, but not 
istationarity. If the independence condition does not hold, the general 
iorm of the solution is the same as that outlined, but it becomes 
Ä bit more complicated, and the computational requirements may 
become much greater. If stationarity is assumed, as well as inde- 
pendence, and if the desired storage poUcj^ is that set of rules which 
will maximize, in each year, the simi of discounted expected gains in 
:all future years, then the resulting optimal storage rules are identical 
ior all years. That is, a single (stationary) optimal rule 6 apphes in 
-every year- 

^^ For a more concise, more purely symbolic statement of the procedure, which 
Tmay help to clarify both its nature and the specific steps, see Appendix Note 5. 
A characteristic of the method is that the computational operations are per- 
formed on the successive gain functions themselves, the resulting storage rules 
ialling out more or less incidentally. 

It should be noted that functions like Vt+i,n(Ct+Xt+i) are not, in general, 
linear, so that, to get the expected value, it is necessary to integrate the whole 
function over the distribution of x, rather than simply to insert the expected 
value of :x.    That is, in general, EVt+i,n(Ct4-Xt+i) is not equal to Vt+i,n(Ct4-Ext+i). 
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Such a rule can be computed by the iterative procedure just out- 
lijied, by taking the number of iterations successively larger. The 
procedure can be summarized as follows: Define an operator J 
operating on any function </> by 

J«(S)=Max [5(S-C)~7(C)+aE<i>(C+x)] (19) 
0<C<S 

where E means the mathematical expected value with respect to x, 
that is, the integral over the probability distribution F(x).   Then 

ti,n(S)=J-^5(S) (20) 

where Vi,n is the maximized sum of discoimted expected gains in 
years 1 through n, S is the initial year's total supply (the subscript 1 is 
omitted for convenience), and the superscript n-1 on J indicates that 
the operation is performed n-1 successive times.    As n increases, 
Vi,n(S) converges to a limit, that is, 

LiinJ^5(S)=/3(S) (21) 
n-»» 

where ß (S) is the maximized sum of discounted expected gains in 
all future years. This sum is a fimction of the initial year's total 
supply, S.^ 

Another way to look at the problem is to say that we want to 
find the function /3(S) which satisfies the equation 

Jß(S)=ß(ß) (22) 

The uniqueness of the solution, shown in the convergence proof, 
depends on 5 being bounded (witíiin the range of possible values of S) 
and on the annual discount factor a being less than 1. Having 
obtained j8(S), the optimal stationary storage rule 6 is obtained by 
observing, for each value of S, that value of C which maximizes 

ö(&-C)~7(C)+a E ß(C+x) (19.1) 

The solution based on the marginal value función.—^Although the 
method suggested on page 13 for determining the total value function 
imphes that it is diiïerentiable, the method of solution outhned 
above does not require either differentiabihty or continuity in 
this function.   However, if the total value function 5(Y) is differen- 

20 A detailed discussion, and the proof of convergence, is given in Appendix 
Note 5. 

In computations for practical applications, the iterations are not, of course, 
continued to infinity, but only to the point where convergence is achieved. That 
is, to the point where J° ô(S) = J°~i ô(S), for all relevant values of S. Once 
such convergence is obtained, further iterations in no way change the results. 
The number of iterations required depends on the conditions of the particular 
application, and also on the accuracy of the basic data or the number of significant 
digits carried in the computations. The larger the number of significant digits 
carried, the larger the number of iterations required to produce complete 
convergence. 
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tiable, then optimal storage rules Ôi, . . . , On, or, under stationarity, 
the optimal storage rule §, can be obtained using the marginal value 
function p(Y), defined as the derivative of total social value, that is, 

P(Y)=^ (23) 

Each of the successive steps in the solution can be shown to be mathe- 
matically equivalent to the corresponding step in the procedm*e using 
the total value function 5(Y). 

As before, we start with the last year of the n-year period. The 
following steps are involved: 

1. For year n, set the carryover equal to Cn. If the policy criterion is to 
maximize the sum of discounted expected gains over the n-year period, then 
Cn=0. If the criterion is to have a specified level of stocks on hand at the end 
of the period, and to maximize the sum of discounted expected gains during tha 
period subject to that restraint, then set Cn equal to that specified level. 

2. For year n-1, find for each possible value of S the value of C>0 which 
satisfies 

aEAx(C+Xn-a)-yn-i(C)-p.-i(S-C)=0 (24) 

where E is the mathematical expectation with respect to Xn (the integral over 
the probability distribution Fn(x) ), a. is the annual discount factor, pn is the 
marginal value function in year n, 7'n-i(C) is the marginal cost of storage in 
year n-1 (the derivative of Tn-i(C) ), and pn-i is the marginal value function in 
year n-1. This gives C as a function of S, and that function is the optimal storage 
rule in year n-1, ön-i(S). For those values of S where no value of C>0 satisfies 
the above condition, *n-i(S)=0. 

3. For year n-2, find for each possible value of S the value of C>0 which 
satisfies 

a E pn-l [C+Xn-i-ên-i(C+Xn-i)]-yn-2(C)-p.-2(S-C)=0 (24.1) 

where E is the mathematical expectation with respect to the random variable 
Xn-i, ^n-i is the optimal storage rule for year n-1 (determined in the preceding 
step), and the other symbols are similar to those used in equation (24). This 
gives C as a function of S, and that function is the optimal storage rule in year 
n-2, &n-a(S). For values of S where no value of C>0 satisfies the condition, 
C2(S)=0. 

4. In general, for year t (t=n-l, n-2, . . ., 1), once the optimal storage 
rule for year t+l, Ôt+i, is determined, find for each possible value of S the 
value of ô>0 widch satisfies 

CL E pt+1 [C+Xt+i-ôt+i(C + Xt+i)]-7't(C)-pt(S-C)=0 (24.2) 

where E is the mathematical expectation with respect to the random variabJe 
Xt+i, and the other symbols are similar to those defined in praceding steps. This 
gives C as a function of S, and that function is the optimal storage rule for year 
t, èt(S). For values of S where no value of 6>0 satisfies the condition, êt(S)=0. 

The optimal storage rule for each year of the n-year period, èi, 
. . ., en, is thus determined.^^ 

21 Proof of the mathematical equivalence of this procedure to that using the 
total value function is given in Appendix Note 6. 

It should be noted that functions like 

Pt[C + Xt-öt(C + Xt)] 

are not, in general, linear in xt, even if pt is linear; so that, to get the expected 
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In almost any conceivable practical application (certainly in all 
those we have considered), the inverse of the storage rule function 
Ö(S), that is, e~Kp)j is unique for OO. That is, the function (9(S) 
is monotonically increasing for all values of S such that ö(S)>0. This 
means that each step in the procedure can be considerably simplified 
if, instead of finding for each possible value of S the value of O O 
which satisfies the stated condition, we find for each possible value of 
C>0 the value of S which satisfies the condition. The result is to 
obtain S as a function of C, and that function is the inverse of the 
optimal storage rule for the given year, say êt~KC). To obtain the 
optimal storage rule êt(S), we simply invert êc^C). 

For the case of stationarity, the procedure is essentially the same, 
but the iterations are continued until the resulting 0 converges. 
That is, if d(S) is the optimal stationary storage rule, then successive 
approximations öo(S), Öi(S), . . ., 0^(3), such that Lim d^(S)=ê{S), 

m->œ 

are obtained by letting 6o(ß)=0 (or any positive constant or any 
monotonically increasing function) and (for m=l, 2, . . .) finding 
^m(S) to satisfy the condition 

aEp[Ö^(S)+x-Ö^_i(ö.,(S)+x)]-7'[Öm(S)]-p[S-ö^(S)]=0    (25) 

for all values of S. Alternatively, and more simply, if d~^(C) is 
imique for OO, the condition to be satisfied can be written 

aEp[C+x-e^.^{C+x)]-Y{C)-p[d^-\C)-C]=0 (26) 

for all values of OO. 
The optimal stationary rule ê(S) is, then, the function 6 which 

satisfies the following equation for all values of S: 

aEp[ö(S)+x-ö(ö(S)+x)]-y[^(S)]-p[S-ö(S)]=0       (25.1) 

Alternatively, if the optimal stationary rule d(S) has a unique inverse, 
¿~^(C), for C>0, then d(S) is the function 6 which satisfies the follow- 
ing equation for all values of O O. 

aEp[C+x-ö(C+x)]-y(C)-p[rHC)-C]=o       (26.1) 

Por some purposes, it is convenieot to rewrite the latter equation as: 

rHC)=C+p-'/aJ%[C+x-e(C+x)]dF(x)-7'(C)j-     (26.2) 

where p~^ is the inverse fimction of p, and the expectation operator is 
written out expUcitly as the integral over the distribution F(x). 

value, it is necessary to integrate the whole function over the distribution of Xt, 
rather than simply to insert the expected value of Xt.    That is, in general, 

Ept[C+Xt-öt(C+Xt)] 
is not equal to 

Pt[C+Ext-öt(C+Ext)]. 
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It may clarify matters to repeat, in slightly different form, the 
iterative procedm-e for finding the solution to equation (26.1), that 
is, the optimal stationary storage rule ê(S), given the annual discount 
factor a and the (stationary) functions marginal value p, marginal 
cost of storage 7', and probabihty distribution of output F(x). The 
following steps are involved: 

1. Take Öo(S) = 0, or, alternatively, an arbitrary function Öo(S) as the starting 
point. 

2. Find of ^(C) by 

öfi(C) = C+p-ijaJ^"p[C+x-öo(C+x)ldF(x)-7'(C)} (26.3) 

Invert öf^(C) to get öi(S). 

3. In general, for m = l, 2, . . ., having found öm-i(S), find e^{C) by 

ö-^(C) = C + p-ijaJ^"p[C+x-önx-i(C+x)]dF(x)-7'(C)[ (26.4) 

Invert ö~VC) togetöxn(S). 

4. Then the optimal stationary storage rule is given by 

Limö„,(S) = e(S) (27) 
in->oo 

In computations for practical appHcations, the iterations are not, 
of course, continued to infinity, but only to the point where con- 
vergence is achieved; that is, to the point where 0^(8) = 0^-1 (S), for 
all relevant values of S. Once such convergence is obtained, further 
iterations in no way change the results. 

Computational considerations.—The solution using the marginal 
value function is, of coiu-se, less general than that using the total 
value function, since the total value function must be differentiable 
so that the marginal value function exists. Fm-thermore, generaliza- 
tion of the solutions to include the possibility of nenindependence 
is usually easier if the total value function is used. However, for 
the case of independence, which has been assumed in all of the 
discussion so far, the solution and the computations using the marginal 
value function have several advantages over those using the total 
value function. One advantage is that, when using the marginal 
value function, the cumulative sums of discounted expected gains 
(that is, the Vi,n functions) need not be computed at each step. Thus, 
computing labor is saved in each iteration, and further, the nmnber 
of required iterations is less (in the case of stationarity), since the 
storage nde functions (them's) tend to converge more rapidly than 
do the corresponding Vi,n functions. Additional characteristics of 
the solution and computations using the marginal value fimction 
are discussed in the remaining pages of this section. 

The integrations over F(x) at each step, that is, the computations 
of the expected values E, still are carried out numerically, but values 
of the functions p, B and 6'^ can conveniently be found graphically. 
For the kinds of applications discussed beginning on page 21, a given 
number of iterations can be carried out in about one-fom-th the 
ntunber of computing man-hours required when using the total value 
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function, and with somewhat greater precision. This results because, 
when using the marginal value function method, iaterpolations can 
be made which cannot be used with the total value function method. 
For the applications which have been made, the number of iterations 
required to achieve convergence in Ö, witlun the limits of accuracy 
of the combined numerical-graphical procedure, varied from 7 to 15. 

In cases where the number of required iterations is large, labor 
can be saved by a trial-and-error method as follows: We firat define 
an operator ir by 

7rÖ(C)=aEp[C+x-ö(C+x)]-p[ri(C)~C] (28) 

Then the optimal storage rule Ô(S) is that function 9 which satisfies 
the equation 

,rÖ(C)=7'(C) (29) 

Different 6^s are tried, and the corresponding irö(C) fimctions com- 
puted, until a sufficiently close approximation to 7'(C) is obtained. 
After some practice, good approximations frequently can be obtained 
with relatively few trials. Once a fairly close approximation has been 
obtained, the corresponding 6 can be labeled ^o, and then the iterative 
procedure applied until complete convergence is attained, if desired. 

Since numerical convergence, within the limits of computational 
accuracy, is not equivalent to mathematical convergence, it is desir- 
able to be able to show the existence of an '^upper bound" to the 
optimal stationary storage rule Ô, that is, a function OB (say) such that 
^B(S) >d(S) for every S. This can be readily done, using the marginal 
value function method. All that is required is to find a fxmction ^B 

such that irÖB(C)<7'(C) for every C; it follows that ÖB(S)>0(S) for 
every S.^ 

SPECIAL MATHEMATICAL RELATIONSHIPS OF INTEREST 
TO THE ECONOMIC ANALYST 

Relations between free-market and optimal governmental storage,— 
From equation (26.1) on page 46, the following interesting equivalence 
relation can be shown : The amoimts which would be stored under 
an optimal governmental storage program, that is, a program that 
maximizes the sum of discounted expected net gains to the general 
public, are exactly the same as the amounts wMch would be stored 
in the aggregate by private firms in a free market, if the foUowing 
conditions are satisfied: 

22 This result is intuitively acceptable: uniformly lower storage costs imply 
uniformly higher optimal storage rules. The truth of this proposition also 
can be seen by setting OB equal to do in the iterative procedure, and observing the 
relation between this $o and the resulting 0^   Thus: 

aEp[C+x-oo(C+x)]-xoo(C)-p[o¿-^(C)~C]=0 
and 

aEp[C+x-i?o(C+x)]~y(C)~pfer^(C)-C]=0 

Since y(C)<iröo(C), it foUows that p[ofHC)-C]<p[o¿"^(C)-C], that is, since 
p is monotonically decreasing, o^^(C)>o¿'^(C), so that, öi(S)<öo(S). 
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1. The market is perfectly competitive, and all storing is done by firms seeking 
to maximize discounted expected profit; 

2. The marcinal value function p(Y) is the same as the market price function; 
3. The market discount factor is the same as the Government's discount factor; 

And 
4. y^{C) is the price at which the amount C of storage space can be rented, 

that is, the ''supply schedule" of storage space, minus the "marginal convenience 
benefit" of the amount C of stocks on hand. 

Under these conditions, if d(S) is interpreted to mean the aggregate 
amount stored by private firms, the first term in equation (26.1) is, 
for any given year, the discounted expected price in the foUowing year, 
the tmrd term is the price in the given year, and the middle term is 
the per-unit marginal cost of storage. Only if o(S)=è(S), that is, 
only if the private firms' aggregate storage activity is such as to 
satisfy equation (26.1), is the market in equilibrium. If o(S)<ê(S) 
for some S, expected marginal returns are greater than marginal costs, 
and some firms tend to increase their amounts stored or to enter the 
storing business; conversely if ^(S)>é(S) for some S. 

Relations between the conditions and the optimaZ storage rule.—Use of 
equation (26.1) also shows more clearly and simply than can otherwise 
be done the relationships between the conditions of the problem, that 
is, the discount factor a and the functions marginal value p, marginal 
cost of storage 7', and distribution of output F, and the solution to 
the problem, the optimal stationary storage rule d. It can be shown 
fairly easüy that certain kinds of changes in some of the conditions 
are equivalent, in their effects on the resulting optimal storage rule, to 
specified changes in other conditions. Equivalence relations of this 
kind, which are useful both for substantive and computational 
purposes, are illustrated in the following paragraphs. 

For given a and F, a change in p(Y) by a constant factor r is equiv- 
alent in its effects on Ö to a change in 7^(0) by the constant factor 1/r. 
From another viewpoint, a general price inflation or deflation which 
does not change the ratio of p(Y) to T'(C) for any Y or C, and also 
does not change the interest rate or a, has no effect on the optimal 
storage rule 6. Similarly, a change in p(Y) by the addition of a 
constant k is equivalent in its effects on d to adding the constant 
(1—a)k to 7'(C). Also, for given a and F, if p*(Y)=rp(Y)+k and 
y*(C) = (l/r)7'(C)+(l/r)(l—a)k, then the same d which is optimal 
under p*, 7' is optimal under p, 7'*; that is, a change of p to p* is 
equivalent in its effects on ê to a change in 7' to y^*.^ 

Using the results of the last paragraph, it follows that if 

p*(Y)=r[p(Y)-Po]+Po=rp(Y) + (l-r)Po (30) 

then a change in p to p* is equivalent in its effects on Ö to a change hi 
7:(C) t0 7'*(C), where 

y*(C) = (l/r)7'(C)+(l/r)(l-a)(l-r)Po (31) 

» Proofs of these statements are given in Appendix Note 7. 
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The flexibility of the marginal value function is defined by 

6(Y) = -[dp(Y)/dY].[Y/p(Y)] (32) 

That is, flexibility is the absolute value of the elasticity of marginal 
value with respect to quantity utilized. Let €o be the value oi the 
flexibility fimction at the point Y where p(Y)=Po. Then changing 
p(Y) to p*(Y), as defined by equation (30), implies changing €o to 
co*=r€o. Thus a change in the flexibility €o by a factor r, where the 
change is accomplished by changing p as defined above, is equivalent 
in its effects on 0 to changing 7' to 

y*=(l/r)y+(l/r)(l-a)(l-r)Po (33) 

For a numerical illustration of the last result, suppose €o=2.00 
and we wish to make €o*=2.50 by making 

p*(Y) = 1.25[p(Y)-Po]+Po (30.1) 

where Po=p(Ex), that is, the value of the marginal value function at 
Y=the mean value of output x. Suppose also that Po=$1.50 per 
bushel, 7'(C)=$0.10 per bushel (constant marginal cost of storage), 
and a=0.95 (equivalent to an interest rate of about 5 percent per 
annum). A simple comp utation shows that changing p to p * (and there- 
by changing €o=2.00 to €o*=2.50) is equivalent in its effects on d to 
changing the marginal cost of storage from 7'(C)=$0.10 per bushel 
to 7'*(C) = $0.065 per bushel.^* 

We next consider what can be said about the effects on the optimal 
storage rule of changing the variance of the probability distribution 
of output F(x). To be specific, let F(x) be changed to G(x) by the 
relation 

g[r(x-M)]=(l/r)f(x-/z) 134) 

where f is the probability density function of the distribution F, 
transposed for convenience to take the origin at /t, the mean of x; 
g is the probability density fxmction of the distribution G; and r is a 
constant factor greater than zero. G then has the same general form 
and the same mean as F, but standard deviation (rQ=r<rp. The prob- 
lem is, for given 7', a and p, to find a relation between the storage 
rule 6Q which is optimal under G and one which is optimal under F. 
The solution is to first find the rule 6* which is optimal under F, y\ 
a, and p*, where p* is defined by 

p*(Y-M)=p[r(Y--M)] (35) 

For linear p, this is equivalent to making 

p*(Y)=r[p(Y)-p(,i)]+p(M) (36) 
Then the optimal rule under y', a, G and p is ^ 

  êa(S-M)=rO*[(l/r)(S-M)] (37) 
2* If p(Y) has constant flexibility, p*(Y) as deñned here does not have constant 

flexibility, but if p(Y) is linear, p*(Y) also is linear. 
26 See Appendix Note 8. 
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Methods that allow Jor random fluctuations in demand,—An im- 
portaat feature of the method that uses the marginal value fimction 
is that random fluctuations in the conditions of demand, as well as of 
supply, can readily be incorporated into the solution. The simplest 
case is one where the marginal value function p(Y) in each year 
(including the current year) is subject to the same probability dis- 
tribution. One then could define R(Y)=Epp(Y), where Epp(Y) ia 
the integral of p(Y) over the probability distribution of p. Then 6 is 
obtained as before, substituting R everywhere for p. However, it 
usually is more realistic to suppose that information about demand, 
or about the marginal value fimction, in the current year is better or 
more exact than the corresponding iiiformation for future years; that 
is, to treat information about demand in the same way as information 
about supply. If the current yearns marginal value function is known 
and future years' marginal value functions are subject to known 
probability distributions, then an explicit solution would in general 
involve an iterative procedure similar to those already outlined, except 
that each step requires integration over the probability distribution 
of p as well as over F(x). 

By making a certain not unreasonable assumption about the way 
in which the random fluctuations in marginal value occur, the solution 
can be considerably simplified. The assumption is that the marginal 
value function in year t is given by Pt(Yt+Ut), where Yt is quantity 
utilized, the value of Ut for the current year is known (designated Ui), 
and Ut in each future year t is a random variable subject to some 
known or assimied probability distribution. If the function p is 
thought of as plotted on a graph with Y on the horizontal axis, the 
assumption is that the random fluctuations or shifts in the curve occur 
horizontally. This is analogous to assuming, for a demand schedule, 
that at a given price the quantity demanded is a random variable 
subject to a probability distribution, and that the probability dis- 
tributions corresponding to different prices have different means 
but are otherwise identical. 

With randomly fluctuating marginal value functions of the kind 
just described, the solution for the optimal storage rules 6 is obtained 
as foUows.^^ The storage rule B becomes a fimction not of S alone, but 
of S+U, that is, C=Ö(S+U) and (9-HC)=S+U. From equation 
(26.1), the optimal storage rule 6 is the fimction 6 which satisfies the 
equation 

aEx.np[C+x+u~ö(C+x+u)]-7'(C)-p[rHC)-C]=0     (38) 

where Ex,u means the integral over the probability distributions of x 
and u. A new random variable z=xH-u can be defined, and its 
distribution determined from the distributions of x and u. Then the 
equation to be satisfied by 6 can be written 

aE,p[C+z-ö(C+z)]~y(C)-p[rHC)-C]=o      (ss.i) 

^ For simplicity, the discussion is for the case of stationarity, so the time 
subscripts are dropped; the modifications required for non-stationary should be 
clear to the reader. 
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6 is computed by the procedure outlined earlier, keeping in mind that 
the resulting optimal storage rule is a function of S+U rather than S 
alone. Thus, if in the current year U=0, the only change in d for 
the current year caused by the introduction of demand variability in 
future years is that due to the greater variability of z over that of x. 
If p[S—^(S)], plotted against S, is concave upward, as it will be in 
most practical applications, the change in 6 caused by introducing 
random variability in demand is upwards. That is, an optimal storage 
policy imder conditions of random fluctuations in future demand calls 
for higher levels of storage than an optimal policy under conditions of 
fixed future demand schedules^ther things being equal. 

Some computational aids,—We next present mathematical proofs 
for the methods of obtaining approximate rules given in a preceding 
section and certain other devices by which the task of computing 
optimal storage rules under specified conditions, using the marginal 
value function, can be somewhat lightened. Some of the relation- 
ships discussed also are of interest in themselves. Most of the dis- 
cussion is, for simplicity, in terms of finding the optimal storage rule 
for the case of stationarity and with no random fluctuations in 
marginal value or demand, but some of the ideas also can be applied, 
with suitable modification, to the cases of non-stationarity and random 
fluctuations in demand. 

If the marginal value function p(Y) is linear, say pCY)=q—pY, 
where q and p are constants, then equation (26.1) (see p. 46) reduces 
to: 

ö-KC)=y(C)/p+(l-a)q/p+aM+(l+a)C-aEö(C+x)      (39) 

where /x is Ex, the mean of the probability distribution of x. If the 
marginal cost of storage y\C) is constant, designated y', equation 
(39) can be written 

r^(C)=Kx+(l+«)C~a f" ö(C+x)f(x)dx (40) 

where Ki is a constant, 77p+(l—a)q/p+aM; k is the value of S (to 
be determined, along with the rest of the storage rule) such that for 
S<k, ö(S)=0; f(x) is the probability density of x; and E^(C+x) is 
written as the integral to emphasize that the integration is not taken 
over the full range of F(x). 

Equations (39) or (40) indicate that, even if the marginal value 
function p(Y) and the marginal cost of storage fimction 7'(C) are 
linear, the optimal storage rule ê(S) cannot be linear, even over the 
range S>k. The solution 6 is obtained by iteration as before, but the 
computations become somewhat simpler, since no computation of 
values of the function p (graphical or otherwise) are required. At each 
step, having obtained values of the fimction BmiP), values of öm(S) 
in most applications can be obtained numerically by linear interpola- 
tion. Even though ê(S) is not linear, in most applications it is suffi- 
ciently close to being linear so that linear interpolations over narrow 
Tanges give adequate accuracy. 
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Equation (40) indicates that, for given a and F, any changes in 
p and 7' which leave the constant K2=y^/p+(l—a)q/p unchanged 
also leave the optimal storage rule & unchanged. For all p's which pass 
tíirough the point (Po, Yo), q/p=Po/p+Yo, so that any changes in 7' 
and p which leave the constant K8=77P+(l-~«)Po/p unchanged also 
leave è unchanged. But a change in p by a factor r is equivalent to 
changing €0 (the flexibility at the point Po, Yo) by the same factor r. 
So equivalence relations between changes in €0 and changes in 7' 
can be obtained directly for the linear-p case, and they are, of course,^ 
the same as those obtained on p. 49 for the more general case. 

As pointed out on p. 33, in many applications which have been 
carried out to date, the optimal storage rule ê(S), when computed for a 
given set of conditions and plotted on a graph with S on the horizontal 
axis, is a curve approximately ^'paraUel" to and lying to the left of, an 
optimal storage rule, say Ö°(S), which is computed using the same set of 
conditions except that output variability in future years is assumed to 
be zero and output in each year is taken equal to the expected value 
or Ex.   That is, d(S) «ö^(S+d), where d is some constant. 

The computation required to obtain the optimal rule d^(S) under 
the assumption of zero variability in future outputs is a relatively 
simple one. The optimal role, C=Ö°(S), may be graphed in a series of 
monotonicaUy increasing connected line segments, as in figure 7. 

ESTIMATION OF OPTIMAL STORAGE RULE 
BY USE OF LINE SEGMENTS 

CARRYOVER (BU.)-C 

TOTAL SUPPLY (BU.) -S 
U.S. DEPARTMENT OF AGRICULTURE NEC. 4404-57(8)     AGRICULTURAL MARKETING SERVICE 

FIGURE 7.—Coordinates for the connecting points of the line segments in this 
chart are obtained by formulas (41) to (44). The monotonicaUy increasing 
segments suggest the general shape of the optimal storage rule under the con- 
ditions specified. 
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If p(Y) is linear, the segments of d°(S) are also linear; if p(Y) is not 
linear, the segments are not linear, but may be adequately approxi- 
mated for most practical purposes by linear segments. Hence all that 
is required to determine the rule d°(S) is to determine the connecting 
points of the segments, which are designated in the chart as (Si, Ci) 
(i=0, 1,2,   . . . ).   The subscripts i on S and C do not here represent 
Îears, of course, but simply the different points along the rule C=Ö°(S). 

let h be the harvest in each future year; if the rule is being calculated 
for purposes of approximating the optimal rule with variable yields, 
h=M=Ex. As before, p(Y) is the marginal value function, a is the 
discoimt factor, and 7' is the marginal cost of storage (here assumed 
constant). 

We define a linear operator D operating on a variable Z by 
DZ=aZ—7'. Then the optimal rule Ö°(S), for the case of constant 
harvest in future years, is determined by obtaining the segment con- 
necting points (Si, Ci) as follows, where M^ is the value of the marginal 
social value function at Y=h, that is, Mh=p(h): 

So=p-HDMJ (41) 

S.=S._i-h+p-HD'+'MJ (i=l, 2, ) (42) 

Co=0 (43) 

C,=S,_i-h (44) 

=S,-p-i(D'+iMO (44.1) 

=C,_i-h+p-»(D'M,) (i=l, 2, ) (44.2) 

where the superscript (—1) on p indicates the inverse of the fimction, 
and the superscript (i+1) on D indicates that the operation is to be 
performed i+1 times. The three expressions for Ci are equivalent; 
all are given to indicate the inter-relationships involved and to give 
the computer a choice. So is the S-axis intercept of Ö°(S). The mean- 
ing of the D operations may be clarified by noting that: 

Fori=l, 
J)'+'M^='D'M^=a(aM^-Y)-Y (45) 

For i=2, 
D*+^Mi,=D3M„=a[a(aMh-y)-y]-7' (45.1) 

In general, 

D*+iMi,=a»+iMi,-7'¿aí (45.2) 

Proofs of these results are given in Appendix note 9. A numerical 
illustration was given on pp. 34-36. 

We next consider the problem of determining an approximate value 
of k, the S-axis intercept of the optimal storage rule ê(S) for the case 
of uncertainty in future outputs, that is, when the harvest x in any 
future year is a random variable subject to an estimated probability 
distribution. The exact value of k is, of course, obtained from the 
iterative computation procedure along with the rest of the storage 
rule. The approximation considered here is for the purpose of ob- 
taining an approximate rule, by the method given starting at the bot- 
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torn of page 33. The approximate value, say k», is obtained by solving 
the following equation for k: 

k=M~a0:L(k) (13.1) 

where the symbols are defined as follows: 
M is a constant that equals 

M~(l-a)p(/^)/p'(M)-77p'(M) (12.1) 

where /i is the mean of the probability distribution of x, p(ß) is the 
value of p(Y) at Y=/A, p'C/x) is the value of the slope of p(Y) at Y=/i, 
and a and 7' are the annual discount factor and the marginal cost of 
storage respectively, as before. 

öa is an advance estimate or approximation of the average slope of 
the optimal storage rule á(S). This approximation can be obtained 
from the slope of 6^(ß) when the conditions other than yield vari- 
ability are the same as those of the rule now being approximated 
(see p. 38). 

L(k)   is  the  function  defined  by  L(k)= 1    (x-k)dF(x).   The 

values of this function for diflFerent values of k in most applications 
naust be computed numerically. Then the value of k which comes 
close to satisfying the equation k=M—aöaL(k) can be obtained by 
linear interpolation, giving the desired approximate value k». The 
function L(k) depends only on the probability distribution F(x), and 
once obtained for a particular F can be used for different sets of 
assumptions about the other conditions. Derivations of these results 
Are given in Appendix note 10. A numerical illustration was given 
on pages 36-39. 

Expected returns to storage.—The "expected retiu*ns to storage*' 
obtained by following an optimal storage policy for an n-year period 
may be defined as the difference between the sum of discounted 
expected gains when the optimal policy is followed and the sum of 
discounted expected gains when the carryover in every year is zero. 
If the storage rule is computed using the total value function, this 
difference can be obtained directly from the results of such computa- 
tions, because of the fact that the maximized sum of discounted ex- 
pected gains is computed at each step. Thus, for the case of non- 
stationarity, the expected returns to storage for the n-year period 
may be written as a function of the initial yearns total supply as follows: 

En(Si)=Vi.„(Si)-ai(S,)-±;a»-> r°5.(xt)dFt(x.) (46) 
t=2 Jo 

where Vi,n(Si) is the (maximized) sum of discounted expected gains 
under the optimal storage policy and the other two terms are the sum 
of discounted expected gains when the carryover in every year is zero. 

For the case of stationarity, the corresponding expression for n 
years, dropping the subscript 1 on Si is: 

U^{S)=J^-%S)--ô(S)-(i:a''')rd(x)dF(x) (47) 
\t=2 /Jo 



56     TECHNICAL BULLETIN  1178, U. S. DEPT. OF AGRICULTURE 

and for all future years is : 

R„(S)=Lim R,(S)=i3(S)-ô(S)^[a/(l-a)] r"5(x)(lF(x)     (47.1) 
n-^» Jo 

In each case the expected returns are a function of the initial yearns 
total supply S. Calculation of such expected returns functions gives- 
one a measure of the economic importance of a storage policy. Ex- 
pected gains and losses under alternative (non-optimal but non-zero) 
storage rules also may be computed. These aid in determining the 
economic costs of adopting such non-optimal policies instead of an 
optimal policy. 

Calculation of the expected returns to storage is not quite so 
straightforward if the optimal storage rules have been computed 
using the marginal value fimction. However, for the case of sta~ 
tionarity, the problem still can be solved fairly simply. The question 
is, having found the optimal stationary storage rule d using the p- 
fimction, instead of finding the maximized sum of discoimted expected 
gains j8(S) directly using the ô-function, is it now possible to find 
j8(S) from é(S)? The answer is yes, as follows: We know from the 
proof of the equivalence of the two methods of solution in Appendix 
note 6 that 

di3(S)/dS=p[S^á(S)] (48) 

Therefore, 

/3(S)=J^'p[z~ê(z)]dz+K (49) 

where the first term to the right of the equality sign is a function of 
S (call it X(S)) which can be determined from §, and K is a constant. 
The value of K is found as follows: From equation (22), Jß{S)=ß{S), 
that is, 

5[S-ê(S)]-7[ê(S)]+«J^"^[ê(S)+x]dF(x)=)8(S) (50) 

Substituting j9(S)=X(S)+K in this equation gives 

(l-a)K=ô[S-é(S)]-7[ê(S)]+arx[ê(S)+x]dF(x)-X(S)   (50.1) 

It can be verified easily that the expression on the right of the equality 
sign is a constant. Some results of calculating expected returns to 
storage for specific storage rules are given in Appendix note 2. 

The equUiirium level qjf storage,—^The ^'equihbrium level" of carry- 
over is defined in the following way. Under stationarity, if the same 
storage rule 6(S) is applied every year, whether d is optimal or not, 
and if e fulfills the following conditions: (1) Ö(S)<S for all S, (2) 6 is 
continuous and 0<dö(S)/dS<l, and (3) ö(xmax)>0, where x^ax is the 
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greatest possible value of x, then the folio wing statements can be 
shown to be true (see Appendix note 11) : 

1. There exists a value C*>0, such that!    ö(C*+x)dF(x) =C*; that is, if the 
carryover in year t, Ct, equals C*, the expected carryover in year t+1, ECH-I also 
equals C*. 

2. C* is unique. 
3. For any Ct not equal to C*, ECt+i is between Ct and C*. 

The value of C* can be found readily, for a given B, by trial and error. 
Its chief uses are 

1. To enable the economic analyst to make quick comparisons amoag 
the effects on "average" carryover levels of different assumptions 
about the conditions a, y, F and p (or b) and the resulting storage 
rules.    Thus, instead of comparing two niles in entirety by use of a 
fraph or a table of values, one can compare the two resulting equili- 

rium levels.    This does not, of course, give a complete picture of the 
effective differences in the two rules. 

2. To enable the analvst to make rough comparisons between 
"average'' carryover levels that result under optimal storage ndes 
satisfying the criteria specified in this handbook and carryover levels 
recommended by other writers or to satisfy other criteria. 

METHODS THAT ALLOW FOR CONTINGENCIES 
Optimal carryover rules can be computed in various ways for a 

period in which the nation faces the possibility of the future occur- 
rence of war or other disaster with similar consequences if the proba- 
bility of such an occurrence can be estimated and the effects of such 
an occurrence on the relevant conditions (demand, storage cost, in- 
terest rate, and output) also can be estimated. 

For example, if (1) the probability of the nation's being at war in 
any future year is Ö, so that the probability of peace is 1—/3; (2) the 
marginal value function under war conditions, pw, is related to 
that for peace, p, by pj^(YH-U) = p(Y) where U is a known constant; 
and (3) the other conditions (7, a, and F) are unaffected by war, then 
the method outlined on page 51 for the case involving this particular 
kind of random variation in p can be used. 

A suggested approach,—It seems unrealistic to assmne that the 
probability that a state of war exists is independent from one year to 
the next. An assumption that may conform better with experience 
is to say that the probability of a war starting in any future year is ß. 
We then can compute optimal carryover rules for the years of peace 
(that is, for the period of defense preparation) if we know or can assume 
the carryover rule for the first year of war (B^j say). 

B^ could be assumed directly or, perhaps better, computed on the 
basis of assumptions about the expected duration of the war and the 
changes caused by the war in a, 7, p and F. For example, if the war 
is expected to continue indefinitely and to cause no changes in a, 7' 
and F but to cause demand to increase by the amount U for any 
price, then from equation (26.1) the optimal By, must satisfy 

aEp,[C+x-öw(C+x)]-7'(C)-p,[ö-nC)-C]=0       (26.5) 

where p,(Y) = p(Y-U). 
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Having found or assumed 0^, we can find the optimal storage rule 
êd for the years of war-preparedness, that is, the rule which will 
maximize the sum of discounted expected gains during those years, 
by finding that 6^ which satisfies 

ai8E/v[C+x-ow(C+x)]+a(l-)S)Ep[C+x-êd(C+x)]- 

y(C)-p[êi^(C)-C]=0    (51) 

The first term is a determinable function of C, so the method of solv- 
ing for e¿ is essentially the same as that outlined in pp. 44-47 and 
used in the applications to feed grains. 

Once the optimal war-preparatory 6^ is determined, the corre- 
sponding equilibrium level Cd (say) and the equilibrium level 
C* that results under the optimal rule with a prooability of war 
equal to zero can be found. Then, if one likes, the difference between 
Cd and C* can be considered as a 'Var reserve.'^ However, it should 
be emphasized that this is not a separate stock. The primary effect 
of introducing the war contingency is a change in the storage rule 
itself; the change in equilibrium level of carryover is simply a con- 
comitant effect. 

An application.—Computations of explicit war-preparatory rules 
for sets of conditions corresponding to those used for the rules given 
in table 1 have not been carried out. However, an idea of the effect 
of allowing for war contingencies on storage policy, under such con- 
ditions, can be obtained as follows: 

Assume that: 
(1) The probability of a war starting in any future year is j3=0.2; 
(2) During the war, the quantity demanded at any given price is 

4.5 bushels per acre greater than in peacetime, that is, p^(Y) = 
p(Y-4.5); 

(3) In peacetime p is the same as for ^i in table 1, that is, p(Y) = 
4.50—O.IO(Y), and in both peace and war, a, 7' and F are the same 
as for êi(a=0.95, 7^=0.10, <r=3.03). 

Then Pw(Y)=p(Y)+0.45, so (utilizing tha results on pflige 49) if the 
war is assumed to go on forever, ^^ under p^, 7' is equivalent to the 9 
that is optimal imder p, 7'*, where 7'*=0.1225. This implies thBt 
6^ is slightly lower than di, so we get a higher war-preparatory rule êd 
than is actually optimal by taking d^=èi. If the war is not assumed 
to go on forever, 6^ would be still lower. 

From equation (51), imder the conditions stipulated, 

Ep,[C+x-o,(C+x)]=Ep[C+x-âi(C+x)]+pU (62) 

=q-pC~pM+P r   4(C+x)dF(x)+pU (52.1) 
Jki-O 

where ki is the value of S below which ^(S)=0, and U=4.5.   Also, 

Ep[C-Fx-êd(C+x)]=q-pC--pM+P r   êd(C+x)dF(x)     (53) 
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SO equation (51) becomes 

aßpV+aßp r    Ôi(C+x)dF(x)-aft) C    èa{C+x)dF{x) + 
Jki-O Jkd-C 

aEp[C+x^da(C+x)]-Y{C)-p[dK\C)-C] = 0   (54) 

Finally, following the form of equation (39)  (page 52), we obtain 

aßC    êi(C+x)dF(x)-a(l-i8) f"    êd(C+x)dF(x)    (55) 
Jki-C Jkd-C 

Since êi<;Ôd, we again get a 6^ which is higher than it should be by 
substituting 6^ for di.    This gives us 

el\C)=y'/v+a-a)q/p+afjL-aßV+(l+a)C-cc C    ê^(C+x)dF(x) 
Jkd-C 

(56) 

Equation (56) is similar to equations (39) and (40) (page 52) for 
diy except that instead of Ki=31.24 (Ki is defined on page 52), we 
have Ki—a/3U=31.24—0.86=30.38. Comparing this value with 
the values of Kj corresponding to the conditions of êj, Ö3 and 6^ of 
30.89, 30.64, and 30.54, respectively (see table 1), we find that our 
"conservative*' ßa is somewhat higher than 65, but not as high as 64. 

If we take 65 as an approximate ê^, the "war reserve'' is 56 million 
bushels [(0.7—0.3) X140 million]. If 64 is used as a doubly conserva- 
tive approximation to èd, the war reserve is 154 million bushels. 

SOLUTIONS THAT ALLOW  FOR  LAG  EFFECTS  IN  THE 
CONDITIONS 

On page 15, methods are discussed by which the effect of a change in 
one year's supply of grain on the following year's livestock inventory 
can be allowed for, at least approximately, by an appropriate adjust- 
ment in the marginal value function. However, certain other kinds 
of lag effects may be more difficult to handle. If such effects can 
be quantified, the total value function for a given year t can be written 
as a fimction of both the quantity utilized in year t and the quantity 
utilized in the preceding year, t—l, that is, 5t=ôt(Yt, Yt_i). The 
optimal storage rule for a given year t then becomes a function of both 
total supply S in that year and the quantity utilized in the preceding 
year, êt(St, Yt_i), or, in the case of stationarity, Ö(S, Y_i), where 
1 _i is the quantity utilized in the year preceding the application of 
the rtde. The solution may be written out explicitly for the case of 
stationarity as follows: 

Vn.n=Max [Ô(S-C, Y.i)-7(C)]=Vn.n(S, Y-x) (57) 
0<C<S 
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and ên(S, Y^i)=the value of C that achieves the maxhnizatioa. 

Vn>i,n=Max IÔ(S-C, Y.i)-7(C)+ 
0<0<S 

aEVn,n(C+X,  S-C)]=Vn-,.n(S, Y_0      (57.1) 

and 5n-i(S, Y«i)=the value of C that achieves the maximization. 
We continue until V2,n(S, Y_i) is obtained; then 

Vi.n=Max [0(8-0, Y«i)-7(C)+aEV2.n(C+x,S-C)]=Vi.n(S,Y.O 
o<0:^s 

(57.2) 

and éi(S, Y_i)=the value of C that achieves the maximization. For 
the last step, Y_i=Yo, the quantity consumed in the year preceding 
the initial year of the program. 

The solution can be summarized more concisely by defining the 
operator J as 

J<i>(S, Y«i) =Max [5(S-C, Y.i)-7(C) +c¿E«(C+x, S-C)]    (58) 
0<C<S 

Then, 
Vi,,=Jn-iô(S, Y.i) (57.3) 

Computations required are, of course, considerably more voluminous 
than in cases employiag functions of one argument. The modifications 
required in the outline to allow for non-stationarity should be clear. 
Solutions that allow for lags in the other functions, that is, in the cost 
of storage and the distributions of output, can be obtained in an 
analogous way.^ 

OPTIMAL MULTIREGIONAL STORAGE RULES 
MATHEMATICAL SOLUTIONS 

Suppose we have m regions for which the following are known: 
(1) Total value fimctions: Ôi(Yi), . . ., ÔJJJ 
(2) Cost of storage functions: 71 (Ci), . . ., 7m(Cm) 
(3) Cost of transport functions:rij(Qij), i,j = l, . . ., m 
(4) Probabiüty distribution of outputs: F(xi, , . ., Xm) 

The subscripts refer to regions, not years. The solution is written 
only for the case of stationarity, so the year need not be indicated 
explicitly. Thus, 5i(Yi) is the total value of quantity Yi consumed 
in region i in a given year; 7i(Ci) is the storage cost of carrying over 
the quantity Ci in region i in a given year; and Xi is the quantity 
i>roduced in region i in a given year. Qjj is the amount transported 
rom region i to region j, and r,j(Qij) is the cost of that transport. 

*7 A solution that incorporates first-order serial dependence in the distributions 
of yields, applied to compute optimal storage rules for wheat, is given in an 
unpublished manuscript by R. L. Gustaf son entitled "The Storage of Grains to 
Offset Fluctuations in Yields." 
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Based on the total value junction.—The total gain in a given year, 
for the nation as a whole, is defined as : 

W=25,(Y0-S7I(C0~Z;T,J(Q,J) (59) 
1=1 i=i y 

Thus the individual regional gains are assumed to be additive to get 
the gaia for the entire economy. The problem is, given the initial 
supplies Si, . . ., Sm, to find the storage niles ^i, . . . , Q^ which 
maximize the simi of discounted expected gains over some n-year 
period, or, in the limit, over all future years. 

m 
Let Zi=Si--Ci,  so that Yi=Zi—Qi,  where Qi=S Qu is the 

total amount transported out of region i. Let Q be the vector 
(Qi, . . ., Qm).   We define the function X as follows: 

X(Zi, . . ., ZJ=Max[Z;5i(Z,-Q0-2]r,,(Q,^] (60) 
Q       i i,J 

The problem of finding Q to get the value of X is exactly the same as 
the maximization of "social pay-off" as discussed by Samuelson 
(Ô), provided the 5's are defined as areas uader the demand curves. 
Also, as Samuelson demonstrates, this maximization probleim is 
equivalent to the inter-spatial equilibrium problem for a free market. 
In other words, just as we have shown the equivalence of the couditions 
for mteir-temporal equilibrium in a free market and the conditions 
for the maximization of net gain to the general public (see page 48), 
so Samuelson shows the equivalence of the conditions for mter-spalixà 
equilibrium in a free market and the conditions for the maximization 
of net gain to the nation as a whole, where total value is taken to 
be the integral of the market price fimction. Here we are concerned 
with maximizing net gains both inter-spatially and inter-temporally. 

We define the operator J as follows: 

J«(Si, . . •, SJ=Max[X(Si-Ci, .. . , S^-CJ~Z;7i(C0 + 
O i 

aE<^(Ci+Xi, . . ., C„,-1-xJ]    (61) 

where C is the vector (Ci, . . ., Cm) and Max means the maximum 
o 

with respect to C, subject to the restrictions 0<]2Ci<SSi and 

Ct>0 for alii. 

We now write down the solution as follows: 

ti.i=Max[X(Si~Ci, . . ., Sm-CJ-ZÎTi(C,)]=X(Si,..., SJ   (62) 
o 1 

ti.2=Max[X(Si-Ci,..., S„-CJ- 

Z¡T.(CJ+«EX(Ci+x,, . . ., C„+xJ 

(63) 

=JX(S„...,SJ (63.1) 
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ti,3=Max[X(Si-Ci/. . ., S^-CJ- 

STICCO +aEJX(Ci+Xi, . . ., C^+xJ] 

(64) 

=J^(Si, . . ., SJ (64.1) 

and in general, 

ti3=Max[X(Si-Ci, . . ., S^~CJ- 

27i(C,)+aEJ'^-^(Ci+Xi, . .., C^+xJ] 

(65) 

- J°-^X(Si, . . ., S^) (65.1) 

The carryover in each region, Ci, or the storage rule for each region, 
el, thus becomes a function of the supplies in all the regions (Si, . . ., 

To indicate the extent to which a multi-regional solution magnifies 
the computational requirements, we estimate that, for cases similar 
to the applications discussed on pages 21-32, going from a 1-region 
to a 2-region solution increases the number of computational opera- 
tions by a factor of about 200, and going from a 1-region to a 3-region 
solution increases the number of computational operations by a factor 
of about 40,000. 

Based on the marginal value function,—^We next consider the use of 
marginal value (or price) functions, p. For given pi, . . ., Pm, the price 
in any region i in any year is, under spatial equilibrium, a function of 
(1) (Zi, . . ., Zm), where Zi=Si—Ci, and (2) the costs of transport 
Ti,(i, j = l, . . ., m). That is, for given r^, pi=^i(Zi, . . ., ZJ. As 
shown by Samuelson (9), the functions ^i, . . ., ^m can, with some 
effort, be determined. li we wish to maximize both inter-temporal 
and inter-spatial gain, we must find regional storage roles Oi (i= 1,..., 
m) each of which is a function of Si, . . ., Sm. 

Thus, for a 2-year period (n=2), we find for each set of values 
(Si, . . ., Sm) the values of Ci, . . ., Cm such that (for i=l, . . ., m) 

a E^i(Ci+Xi, . . ,, Cm+Xm)-^,(Si-Ci, . . .,Sm-Cm)-7'l(C,) = 0   (66) 

This gives OniSiy . . ., Sm), i=l, . . ., m. 
For n=3, we find for each set of values (Si, . ; ., Sm) the values 

of Ci, . . ., Cm such that (for i=l, . . ., m) 

aE^l[Ci + Xi~öll(Ci+Xi, . . ., Cm+Xm), . . ., 

Cm+Xm—öml(Ci+Xi, . . ., Cm+Xm)] — 

^,(S,-Ci, . . , S^-CJ-7'.(C,)=0 

(67) 
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This gives 612(81, : . ., Sm), i=l, . . ., m. 

The procedttre may conceptually be continued until convergence is 
reached, that is, until 6iji=di^^i=di, i=l, . . ., m. The computa- 
tions, however, are formidable, even for the simplest case, that is, a 
2-year, 2-region model, as may be seen from the following example. 

AN EXAMPLE FOR TWO REGIONS AND TWO YEARS 

Suppose each of two regions has the same p, F and 7, with the 
IF's independent, and TI2=T2I=T and p(Y)=q—pY. Then the price 
in region 1, ^1, is given by one of the following: 

<1) IfY.>Y,+r/p, 

i^i(Y„Y3)=q-(l/2)p(Y,+Y,)-(l/2)T (68) 

<2) IfY2+r/p>Y.>Y2-T/p, 

i^i(Yi,Y2)=q-pY, (69) 

(3) If Y,<Y,-r/p, 

i^i(Yi,Y2)=q-(l/2)p(Yx+Y,) + (l/2)T (70) 

A symmetrical solution holds for ^f-a. 
For region 1, the first term in equation (66) becomes: 

«q-(l/2)«p(C,+C2+2iii) + 
pa     /»C-Oi-l-r/p+Ii 

(l/2)ap(C2-Ci-r/p) .  f(Xx)dXif(x2)clx24- 
Ja=0 J H=0f-0i-r/p+xj 

/»«     pOj-Oi+T/p+ii 
(l/2)ap (xi+X2)f(xi)dxif(x2)dx2 

JX3=0JXI=O3-CI-T/P+XJ 

and the second term becomes one of the following: 

(1) q-(l/2)p(Si+S2-Ci-C2)-(l/2)T, if Si--Ci>S2-C2+r/p 

<2) q-p(Si-Ci), if S2-C2+T/p>Si-Ci>S2-C2-r/p 

<3) q~(l/2)p(Si+S2-Ci-e2)+(l/2)T, if SI-CI<S2-C2-T/P 

Synunetrical expressions appear for the equation applying to region 
2. The solution for n=2 consists of finding values (Ci,C2) to satisfy 
the two equations for each possible set of values (81,82). 
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APPENDIX 

NOTE 1.-MAJOR SYMBOLS USED 
a Discount factor= 1/(1 -f interest rate) 
a Constant term in the linear marginal value function 
b Absolute value of the slope coefficient in the linear mar- 

ginal value function 
ß{S) Maximized sum of discounted expected gains in all 

future years; 

/S(S)=Limf,^(S) 
nr-><» 

ß A probability (see page 57) 
7 Cost of storage function, dollars 
7' Marginal cost of storage function per bushel, dollars 
5 Total value function (defined on pages 13-15), dollars 
p Marginal value, or price, function per bushel, dollars 
Po Marginal value per bushel when utilization  equals 

29.46 bushels, dollars 
p^ Marginal  value function  under  conditions  of war, 

dollars 
Flexibility of marginal value function; 

í(Y)=-[dp(Y)/dY] .   [Y/p(Y)] 

f¡ Elasticity of marginal value function; 17= —1/e 
€o,7;o Values of e and ?;, respectively, at the point where 

quantity utilized equals 30 bushels per acre 
jLt Mean of probability distribution 
<7 Standard deviation of probability distribution 
6 Carryover rule 
e Optimal carryover rule 
^x This has two meanings, depending on the context: 

(1) Optimal storage rule in the i*** year; 
(2) Optimal stationary storage rule under the i*** set of 

conditions 
^1 The result obtained at the i*** iteration, in computations 

to obtain an optimal stationary storage rule 
6^ Carryover rule under war conditions 
e^ Carryover rule under conditions of war preparedness 
â-' Optimal carryover rule when harvest in each futiu-e 

year is assumed equal to a known constant 
X(S) A function defined on page 56 
X(Zi, . . ., Zm) A function defined on page 61 
<i)~^ The function which is inverse to the fxmction 0 
C Carryover, bushels 
D An operator (see page 54) 
C* Equilibriiun level of carryover (defined on pages 56-57), 

bushels 
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C** Level that the carryover will reach after two successive 
"bumper-crop" years (see page 29), bushels 

E Mathematical expectation; if Xi, . . ., Xn are random 
variables, 

. . • 

<^(ai,. . ., ar, xi,. . ., xJdFi(xi) . . . dFn(Xn) J: 
Ei Expectation with respect to the raadom variable i 
F Probability distribution (usually of x) 
f Probability density fimction of F, or relative frequency 
G Alternative distribution of output 
g Probability density function of G 
J An operator 
k This has two meanings depending on the context: 

(1) Value of S below which ö(S)=0; 
(2) Used   occasionally   to   designate   an   arbitrary 

constant 
L A function (defined on page 55) which depends on the 

probability distribution of outputs 
M or K A constant (defined on page 55) whose value depends on 

the conditions of an application 
Mh Value of the marginal value function at Y=h 
m (1) Number of iterations (page 47); 

(2) Number of regions (page 60) 
n Number of years and/or number of iterations 
Po Some specific value of the marginal value function p(Y) 
Pt Price in year t (see page 15), dollars 
p, q Parameters   in   the  linear  marginal  value  function 

p(Y)=q-pY 
Rn(S) Expected returns to storage in years 1, . . ., n (defined 

on page 55) 
r (1) Interest rate (page 11); 

(2) Also used occasionally to designate an arbitrary 
constant factor 

S Total supply in given y ear=carryover from preceding 
^ year plus harvest, bushels 

St=Ct-i+Xt 

Vm, n Sum of discounted expected gains in years m, m+1, 

Vm, n Maximized Vm, n 
Wt Gain occurring in year t 
X Harvest or output, bushels 
Y Quantity utilized, bushels 

Y=S-C=S-0(S) 

In general, Latin letters that represent quantities are shown in 
lower case when the quantities are assumed to be random and are 
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shown as capitalized when the quantities are assumed to be given or 
determinable. 

NOTE 2.-THE ROSENBLATT SOLUTION 

Rosenblatt (8) addresses himself to essentially the same problem 
as that discussed on page 20, namely, finding a storage rule which, 
under stationarity, maximizes the sum of expected gains in all future^ 
years, where the gain in any year is the total value oi the grain utilized 
minus the cost of storage of the grain carried over.^ However, for 
mathematical convenience, he restricts himself to: 

(1) A form of storage rule which makes the carryover in any year 
a constant proportion (to be determined) of the total available supply 
(carryin plus harvest), and 

(2) AppHcation of the criterion of optimahty only after the prob- 
ability distributions of carryovers and quantities consumed (C and Y) 
have completely stabihzed. This restriction means that, in any 
practical appHcation of the rules, their effects during the first several 
years of operation are completely ignored. 

The combined effects of these two restrictions or assumptions lead 
to storage rules which are in fact highly nonoptimal under the criteriou 
adopted, and which, if taken seriously as guides to pubhc policy, 
would result in the incurring of costs to the nation as a whole possibly 
running into hundreds of millions of dollars. 

The objections to the Eosenblatt approach may be outlined in 
greater detail as foUows: 

1. It is not necessary to make in advance any assumption about the form of the- 
storage rule. The method of solution presented by Dvoretzky, Kiefer, and Wolfo- 
witz X^) (as modified in this bulletin) permits the obtaining of solutions without^, 
any such prior assumption. 

2. Optimal storage rules under the conditions and the criterion adopted here 
(and the criterion of Section 3 of Rosenblatt's paper) do not in fact turn out to 
have anything like the form assumed by Rosenblatt (see p. 69). 

3. It can be shown that, using empirically plausible assumptions about the 
other conditions, a constant-proportion storage rule cannot be optimal, unless the 
cost of storage function is assumed to take a form which is empirically highly 
implausible. Consider equation (26.1) shown on page 46. With 6(S) =aS, this 
gives us 

y(C)=aEp[(l-a)(C+x)]-p[(l-a)C/a] (71) 

y(0)=aEp[(l-a)x]-p(0) (72> 

That is, the marginal cost of storage at 0=0 is highly negative. For example^ 
if p is linear (corresponding to Rosenblatt's use of a quadratic weight function) 
and p(Y)=q—pY, then 

y(0) = -(l~a)q-p(l-a)M (72.1> 

where ß is the mean yield. 

Also, 

y'(C)=a(l-a)Ep'[(l-a)(C+x)]-(l-a)p'[(l-a)C/a]/a (73> 

^ Actually, Rosenblatt's criterion is stated as the minimization of the sum of 
expected **losses" in all future years, where the loss in any year is the * Veighting" 
attributable to the quantity of grain utilized plus the cost of storage of the grain 
carried over. But the weighting function is simply the negative of our total value 
function, plus a constant; so that the two criteria are mathematically equivalent. 
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If p(Y) =q-pY, then p'(Y) = -p, and 

7"(C) = -a(l-a)p + (l-a)p/a=(l-a)(l-a)p/a (73.1) 

Th^is for p(Y)=q-pY, 7'(C)=0 when 

C=:aq/(l-a)p+aM/(l~a) (74) 

We can minimize the non-optimality of the Rosenblatt results if, instead of 
taking the carryover as a certain proportion of total supply (S), we make it a 
certain proportion of total supply minus the minimum possible harvest (S—Xmi«). 
This does not change any of the mathematics of the solution, but means simply 
that we are "changing the origin" in the measurements of S, Y and X. This 
modification, which minimizes the degree to which constant-proportion rules 
deviate from optimality and hence presents the Rosenblatt results in their most 
favorable light, is used in the following comments where we compare constant- 
proportion rules with optimal rules. 

Applying the above results to a specific case, for example, to the conditions 
applicable to 06 (see page 30), we find that a constant-proportion rule is optimal 
only if the marginal cost of storage 7'(C) is negative up to a carryover C of about 
18 bushels per acre, which is more than three times the average carryover that 
results under the Rosenblatt solution. 

4. The Rosenblatt results maximize 2» the sum of discounted esroected gains, 
starting with the current year, only if the current initial supply, S, equals the 
long-run expected stable or ergodic value of S. If the initial S is auy other value, 
the gains and costs of the storage program during the first several years of applica- 
tion of the rule, before stability in all the probability distributions is attained, are 
simply ignored. But in the sum of discounted expected gains, the first years of 
the period are the most important, and a storage policy, to be practicable, should 
be applicable to any set of initial conditions. One result of Rosenblatt's restric- 
tion is that nowhere in his solution does a discount factor or interest rate appear; 
this alone would indicate that the validity of the solution is, from an economic 
viewpoint, rather implausible. 

5. As a result of his assumptions, the Rosenblatt storage rules bear little re- 
semblance to rules which are in fact optimal. They do not even result in a correct 
order of magnitude of carryover levels, under alternative sets of conditions. Con- 
sider the seven alternative sets of conditions underljdng optimal rules &i, . . . &7, 
respectively, as shown in table 1. The storage-rule proportion, a, which minimizes 
expected losses, and the resulting stable expected value of carryover, EEC, under 
the Rosenblatt solution, are given by: 

a=^^^; (76) 

EEC=aM/(l-a) (76) 

where 02=variance of yields, /i=meân yield, and 7'= (constant) marginal cost of 
storage.    If paVAi7'<l, a=0. 

Values of a and EEC for the seven sets of conditions, taking the origin for S, Y 
and X at Xmin=19 bushels per acre, are shown in table 6, together with the equilib- 
rium level, C*, of the corresponding optimal rule. 

A grapiiical comparison of rules that result from the Rosenblatt approach 
and the optimal rules developed in this bulletin is shown in figure 8, using the same 
alternative conditions as in table 6. 

6. An idea of the magnitude of the economic loss to society that would be in- 
curred by adopting the Rosenblatt solution, instead of using optimal storage rules, 
is obtained by using the concept of expected returns to storage, as defined on 
page 55 : the difference between the sum of discounted expected gains when the 
optimal policy is followed and the sum of discounted expected gains when the 
carryover in every year is zero. We may readily extend this concept so as to 
apply it to any storage policy, whether optimal or nOnoptimal: for any given stor- 
age policy, the expected return is the difference between the sum of discounted 

^ Subject to his constant-proportion storage rule restriction. 
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TABLE 6.—Com, oats, and barley, com equivalent: Storage rule proportion and re- 

svMina expected stable carryover per acre under the Rosenblatt solution compared 
with the equilibrium carryover level per acre under an optimal rule 

Rosenblatt results 
Equilibrium 

Case» 
Storage rule 

proportion (a) 
Average carry- 

over (EEC) 

carryover 
(C*) 

1       0 
0 
.19 
.19 
.10 
.31 
.02 

Bushels 
0 
0 
2.5 
2.5 
1. 1 
4.8 
.2 

Bushels 
0.3 

2  .5 
3  .6 
4                                1.4 
5        .7 
6_     2.7 
7                                              .4 

* See table 1 for specified conditions. 

expected gains when the given policy is followed and the sum of discounted ex- 
pected gains when the carryover in every year is zero. The expected social loss, 
then, incurred by following any given nonoptimal policy may be defined as the 
expected return to the optimal policy computed for the given conditions minus 
the expected return to the given nonoptimal policy. 

FEED GRAINSt STORAGE RULES PER ACRE 
OPTIMAL RULES COMPARED WITH 
CONSTANT PROPORTION RULES 

Under Alternative Conditions Specified in Table 1 

CARRYOVER (BU.)-C 

a^   is the  constant proportion rule 

under conditions that apply for Q. 

^-.^S"^-"''   r ^"«7 = 0.023 0.023 

19     21    23    25    27    29    31     33    35    37    39 
TOTAL SUPPLY (BU.)-S 

*CORN,  OATS AND  BARLEY,  CORN  EQUIVALENT. 

U.S.   DEPARTMENT   OF   AGRICULTURE NEC.  4113-57(4)      AGRICULTURAL   MARKETING   SERVICE 

FiQUBB 8.—Storage rules developed under the constant-proportion assumption 
used by Rosenblatt differ greatly from the optimal rules developed in this bul- 
letin and, if taken seriously as guides to public policy, would result in large 
costs to the nation as a whole. 
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The expected returns for the optimal rule ^i (see table 1) have been 
computed for alternative values of the initial supply S, and are given 
in the following tabulation: 

Per acre 

Initial supply Expected 
return 

ill or lesa 
Bushels Dollars 

0.32 
32   .35 
34          . 58 
36  .95 
38       L80 
40 _  2.83 
42       4. 16 
44  5.79 
46     --      7. 67 
48  9.52 
60       - 11.28 

The Rosenblatt solution, when applied to the conditions for which Si 
¡ is optimal, results in zero carryover in every year (see table 6). The 

expected return under this policy would therefore be zero for any 
initial supply S.    Hence the expected returns for the optimal policy 

; are in this case equal to the expected losses that would be incurred 
under the Rosenblatt solution policy. When we multiply the above 
figures by 140 million acres to convert them to national aggregates, the 
expected losses range from a minimum of about $45 million to a 

1 possible maximum of $1,500 mülion or higher, depending on the level 
i of initial supply. 

As another example, consider the conditions for which OQ (table 1) is 
optimal.    The expected returns under öß, for alternative levels of 

\ initial supply S, are: 

Per acre 

Initial supply Expected 
return 

29 or less 
Bushels Dollars 

11.41 
30       11.48 
32  n. 97 
34  12. 97 
36  14. 50 
38     .__ 16. 57 
40  19. 08 
42  21. 58 
44     _    . 23. 98 
46   ..      . 26. 30 
48  28.54 
50 rr ,.— 30.71 
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The Rosenblatt solution, when applied to the conditions for which 
^5 is optimal, and taking the S-axis intercept of the storage rule at 
Xmin=19 bushels per acre (to minimize the non-optimality of the 
solution), results in a storage rule proportion a=0.314 and a long-run 
expected carryover EEC=4.78 bushels per acre (see table 6). We 
have not. computed a complete table of expected retiu'ns under this 
rule, for alternative values of initial supply S. However, a comparison 
can be made between the two rules by taking the situation most 

Javorable to the Rosenblatt rule, namely at the point where the initial 
supply S==34.24 bushels per acre, the long run expected level of S 
which corresponds to the long run expected carryover EEC=4.78. 
For an initial S=34.24, the expected return under the optimal rvUe is, 
by interpolation in the above table, about $13.12 per acre. The 
expected rettmi under the constant-proportion rule (for initial S= 
^4.24) is obtained as follows: 

(1) Net gain in current year 
= (Total value under rule) —(Cost of storage) 

— (Total value with zero carryover)       (77) 

= (qM-PMV2)~(7' EEC)-[34.24 q-p (34.24)2/2] (77.1) 

since /x is the amount utilized under the rule and 34.24 is the 
amount utilized with zero carryover. Substituting q=6.50, 
p=0.167 (p. 24), y=0.04 (table 1), EEC=4.78, and ^=29.46, 
gives: 

Net gain in current year =—$5.92. (77.2) 

(The negative sign, indicating a net loss, is, of course, what we 
should expect.) 

(2) Expected net gain in each future year 
=E (Total value under rule)—E (Cost of storage) 

—E (Total value with zero carryover)        (78) 

=EE(qY-pY72)-yEEC-E(qX-pX72) (78.1) 

=p(Var X-Var Y)/2-yEEC (78.2) 

where Var X is the variance of X and Var Y is the long run 
(stable) variance of Y. (The last step makes use of the fact 
that the long run expected value of Y, EEY=/i.) It can be 
shown that Var Y= (1—a)2ö^/(l—a^), where ö^=Var X, so that 

. Var X—Var Y=2a(r2/(l+a).   Substituting p=0.167, <r2=9.18, 
a=0.314, 7'=0.04, gives: 

Expected net gain in each future year=$0.175. (78.3) 

(3) The sum of discounted expected net gains in all future years is 

obtained by multiplying the result of (2) by 2 a°—a/(l—a). 
n=l 

Substituting a=0.98 (table 1) gives: 
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Sum of discounted expected net gains in all future years == 

($0.175) (49)=$8.59. (79) 

(4) Adding the results of (1) and (3) gives: 

Expected return under the constant-proportion rule (for initial 

S=34.24) equals $8.59-$5.92=$2.67. (80) 

Comparing the expected return of $2.67 under the constant-proportion 
rule with the expected return of $13.12 under the optimal rule for the 
same conditions, we have an expected loss to the entire nation of 
$13.12—$2.67=$10.45 per acre incurred by adopting the Rosenblatt 
solution instead of an optimal rule, even under the assumption about 
initial supply which is most favorable to the former. Multiplying the 
per acre loss by 140 million acres gives a national aggregate loss of 
about $1,500 nullion. 

NOTE 3.-A STORAGE RULE UNDER WHICH THE ADDITION 
TO CARRYOVER IS A FUNCTION OF CURRENT CROP 
ONLY 
A storage program might be thought of as an attempt to decrease 

the variance of a probabdity distribution, that is, an attempt to con- 
vert the distribution of outputs into a distribution of quantities 
utilized with the same shape but smaller variance. The objections, 
operational and analytical, to the direct application of such a concept 
in the derivation of storage rules were ^et forth on page 8. A nu- 
merical example illustrating the details of how such a direct appHca- 
tion would work out is given here. 

Let us consider wheat alone, and treat the United States as a single, 
closed market. We assume a constant acreage of 68 million acres, 
approximately the average for 1919-50. Actual yields per seeded 
acre for all wheat during 1919-50 are considered as random inde- 
pendent observations. We thus have a sample of 32 observations 
with a mean of 13.05 bushels per acre and a standard deviation of 
2.60, and an approximately normal distribution.^^ We assume, then, 
that annual output (X) is normally distributed with mean ^^= 13.05X 
68=887 million bushels and standard deviation (rx=2.60X68=177 
million bushels. The probability of output falling more than 20 per- 
cent below average is about 16 percent. 

Suppose we wish to make the amount added to carryover a function 
of the current crop and to alter the variance of the distribution so 
that the probability that the quantity of wheat utilized (Y) in any 
year wiQ fall more than 20 percent below average is reduced to 5 per- 
cent, instead of 16 percent. The criterion must be kept in terms of 
probabilities, unless we go to the extreme of complete stabilization, or 
unless we state the criterion in terms of the change in the variance 
itself. The simplest form for such a rule is Z=0.39 (X-887), where 
Z is the amount to be added to carryover.   Z can be positive or nega- 

8* A goodness-of-fit test for normality gives a probability level for x* of more 
than 90 percent. 
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tive, of course. This rule vrould result, under tíie assumption stated, 
in a normal probability distribution of Z with mean ;i.=0 and standard 
deviation <ra=69 and a normal probability distribution of quantity 
utilized with jLty= 887 and <ry=108. Here, Y==X--Z, that is, the loss 
of gp,in in the storage operation itself is assumed negligible. 

Since we assume mdependence in yields between years, the total 
amount added to storage after n years of operating the rule is 

Z1+Z2+ + Zn=2Z (81) 

a normally distributed variable with zero mean, and standard devia- 
tion o'=Vn . <ra=6&\/ñ. Since the first years of the period of 
application of the rtde may themselves be years of low yields, it would 
be necessary to start the period with gram on hand. Thus, for ex- 
ample, in order to be 99 percent sure of having enough grain in storage 
to operate the rule for one year, the storing agency would need to 
start the year with 161 million bushels on hand. To be 99 percent 
sure of having enough grain in storage to operate the rule for 9 years, 
the agency woxdd have to start the period with 483 milüon bushels 
on hand. 

The effects of allowing for sampling error in the distribution esti- 
mates also can be illustrated. Confidence interval estimates at the 
90 percent probability level for the mean and standard deviation of 
yield are: 12.27</i< 13.83 and 2.16<(r<3.30. Based on the national 
aggregate of 68 million acres, the confidence intervals for output are: 
835</ix<941 and 147<o-x<224. If we (1) ignore the possible error 
in the mean ^^ but take each of the confidence limits for o-j and (2) use 
the same criterion for stability in quantities utilized and the same 
kind of storage rule as previously, results shown in table 7 are obtained. 

TABLE 7.—Wheat: Upper and lower limits for storage rules and related quantities 
obtained when the addition to carryover is a function of current production only and 
allowance is made for sampling error in the standard error of output 

Item Unit 
Limit 

Lower Upper 

Standard deviation: 
Output, (Tx*  
Storage rule, o-, ,  

Probability of an output less than 80 percent of 
average. 

Storage rule as a proportion of the deviation of 
the crop from average, Z. 

Initial stocks required to be able to operate the 
rule with 99 percent certainty for— 

1 year  
9 years   

MÜ. bu. 
.do—. 

Pet. 

147 
39. 
11 

224 
116 
22 

.26 .52 

MÜ. bu-. 
-_do  

91 
273 

270 
810 

1 Limits shown are based on a confidence Interval at the 90 percent probability leveL 

81 Errors of this sort imply that application of thç rule results in the level of 
carryover trendiog upward without bound, or dowïïward to zero. 
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NOTE 4.^RELATIVE IMPORTANCE ON OUTPUT OF VARIA* 
TIONS IN ACREAGE AND YIELD 

The total variation in acreage normally is quantitatively ^of less^ 
importance than th^ variation in yield in its effect on variability of 
output. This is illustrated by the data for wheat and corn in the 
United States as ^hown in table 8. 

TABLE 8.—Wheat and corn: Relative variability in acreage and yield per seeded acre 
as indicated hy specified coefficients ^ 

Item 
Wheat, 1919-50 

Acres Yield 

Com, 1929-50 

Acres       Yield 

Mean _„____. 
Standard deviation  
Range  
Minimum_________ ___. 
Maximum  
Average year-to-year ch^ange  

As a percentage of the mean: 
Standard deviation.. ... 
Range _. 
Minimum minus the mean. 
Maximum minus the mean 
Average change  _. 

MiUiOTlS 
68.2 
7.4 

31.7 
53.0 
84.7 
4.6 

Percent 
10.8 
46.5 

-22.3 
24. 2 
6.8 

BusheU 
13. 0 
2.6 

10.3 
8.0 

18.3 
1.4 

Percent 
19.9 
78.9 

-38.7 
40.2 
10.8 

MWions 
95.5 
8.4 

28.6 
84.4 

113. 0 
3.1 

Percent 
8.8 

29.9 
-11.6 

18.3 
3.3 

Buêheîê 
28.a 

7.2- 
28.0 
14.4 
42.4 
4.0 

Percent 
25.4 
98.9' 

-49. 1 
49.8 
14. 1 

1 Published series on yield per seeded acre begin In 1919 for wheat and in 1929 for com. 

The total variation in acreage is made up of predictable changes as 
well as unpredictable. If we were to compare the relative magnitudes 
of unpredictable variations in acreage and yield, the former would be 
of stiU less importance than indicated by the figures for total variation. 

This subject is discussed in detail in a recent Senate Committee 
report (12, pp. 17-30). 

NOTE 5.-THE SOLUTION USING THE TOTAL VALUE (¿) 
FUNCTION 

As has been indicated, this solution is adapted from that by 
Dvoretzky, Kiefer, and Wolfowitz (2), Some modification was re- 
quired because of the different structure of the problem. Also, the 
concepts "retiu'ns to storage" and ''equilibrium level of carryover" 
do not have coimterparts: in the inventory problem considered by 
these authors. 

The solution as written out here assumes, for simplicity's sake, 
independence in probability distributions of yields between years. 
Modifications required to incorporate joint probability distributions 
of yields in all years are not formally serious, though they would in 
general substantially increase the number of computations. Modifi- 
cations required for serial dependence of specified kinds are discussed 
on p. 59. 
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We first give the solution for a set of optimal storage rules for an 
n-year period, with no assumption of stationarity. Using the nota- 
tion in the body of the bulletin, we generalize by letting Vm.n be 
the sum of expected gains in years m, m+1, m+2, . . . n, discounted 
back to year m.    That is, 

^Yr^n==W^+aEWr^l + C¿^mVr^2+.   ^ (82) 

If Vm.ji is the maximimi Vin,n for given Sm, we have: ; / 

tn.n=     Max   [5n(Sn-CJ-Tn(Cn)] = 5n(Sn) (83.1) 
0<Cn<Sn 

^li-l.n=^      Max       r^n-iiSn-i-Cn-i) -Tn-l (Cn-l) + 
0<Cn-l<Sn-l L 

aJ^"5n(Cn-i+x)dFn(x)] (83.2). 

=^-i(Sn-i)  (say) (84.2)   ^ 

"^11-2.11=      Max 5n-2(Sn-2--Cn-2)-Tn-2(Cn-2) + 
0<Cn-S<Sn-J L 

aJ^"^n-l(Cn-2+x)dFn_i(x) J (83.3) 

=^n-2(Sn-2)   (say) (84.3) 

and so on, till we reach 

ti.n= Max  r5i(Si-Ci)-7i(Ci)+ar"^2(Ci+x)dF2(x)l    (83.4)    : 
o<Ci<Si L Jo J 

=M^i)   (say) (84.4) 

Vmm is thus a fimction of Sm obtained by maximizing, for each value 
of Sm, the expression in square brackets. The optimum carryover 
for year m, for given Sm, is that value Cm which maximizes the same 
expression.    The optimal storage rule êm is the set of all such pairs 

Thus, the computations are actually carried out on the gain 
functions, with the storage rules coming out more or less as by-prod- 
ucts.   This is the complete solution for the n-year non-stationary case. 

For the stationary case, where 5, y and F are the same in each year, 
we note first that Vi, i+m as a function of Si is the same as Vn, n+m as 
a function of Sn for any m and n. We now define the operator J, 
operating on any function <^, by 

J<^(S)= Max r5(S-C)-7(C)+a r"0(C+x)dF(x)l (85) 
o<c<sL Jo • 
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Then, omitting subscripts from Si and Ci: 

ti.i=Max[5(S-C)-7(C)]=ô(S) (85.0) 
0<C<S 

ti 2= Max rô(S-C)-7(C)+a r"ô(C+x)dF(x)1=Jô(S)    (85.1) 
0^G<8 L Jo J 

ti 8= Max rô(S~0~7(C) + « f" J5(C+x)dF(x)l=enô(S)    (86.2) 
o^o<s L Jo J 

and in general 

tin= Max rô(S~C)-7(C)+a r"j^25(c_f,x)dF(x)l=J«-i5(S) 
0^0:^8 L Jo J 

(85.3) 

For given n, we obtain di, the optimal rule for the first year, by noting 
for each value of S the value of C that maximizes the expression in 
square brackets. 

The only remaining question is, Does the process converge so that 
as n gets larger and larger the resulting 6i gets closer and closer to the 
best stationary rule 0? In other words, if we designate by ß{S) the 
sum of discounted expected gains to mfinity when the best rule ß is 
followed every year, does Lim eP5(S)=jS(S)?   This seems obvious, 

but in any case, a formal proof of a stronger statement can be offered, 
namely, that if g(S) is any bounded function, then Lim J''g(S)=j8(S). 

n->œ 
This implies that we could reduce the number of iterations necessary 
to achieve a given closeness of approximation to 0i by starting with 
some g(S) wluch is closer to /3(S) than is ô(S). This result was not 
used in the actual computations, however, because (1) it was not 
obvious how to find a g(S) that would be much better to start with 
than ô(S) itself; (2) it was felt to be somewhat advantageous to 
follow a procedure with as much intuitive plausibility as possible; 
(3) by starting with ô, each iteration produces in itself a result which 
has common sense meaningfulness, that is, a storage rule which is the 
optimal rule for the first year of an n-year period (in the case of the 
(n—l)*** iteration). 

However, the proof, which like the rest of this discussion is adapted 
from Dvoretzky, Kiefer, and Wolfowitz (;?), is recorded here for 
possible use in future applications. We first break the operator J 
mto two parts I and G so that J=I G where 

I*(S) = sup [5(S-C)+«(C)] (86) 
0<C<S 

G*(C) = ~7(C)+aJ^Vc+x)dF(x) (87) 
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With ß defined as in the preceding paragraph, the maximized 8\un of 
discounted expected gains in all intervals except the first, is 

So we can write: 

aJ^"*^(Ci+x)dF(x) (88) 

ß(S)= sup [ô(S~C)-7(C)+a rßiC+x)dF(^)] 
0<C<8 t/o 

=Ji3(S)=IGß(S) (89) 

Since 5(S) is bounded, /3(S) also must be bounded and so mu3t|3(S)— 
g(S).   Let 

sup l^(S)-g(S)|=M (90) 
8>0 

Then 
8upIGi8(S)-Gg(S)|<M (91) 
8>0 

since 

G/3(S)-Gg(S)=aJ^"[)3(S+x)~g(S+x)]dF(x) (91.1) 

<a r"sup|i8(R)-g(K)|dF(x) (91.2) 
Jo   R>0 

=a sup|i3(R)-g(R)|=ûM (91.3) 
R>0 

Also, 
sup|IG|3(S) -IGg(S) I <aM (92) 
S>0 

To prove this, we must show that 

sup |I*i(S)-I<^(S)|< sup |<^(S)-<fe(S)| (92.1) 
S>0 S>0 

For given S, let 

5(S-R)+^(R)=^i(R) (0<K<S) (92.3) 
and 

Ô(S-Z)+^(Z)=^2(Z) (0<Z<S) (92.4) 
Then 

ro<R<s 
^Jnf^WR)-^.(Z)<^.(R)-^.(Z) {Q-2<S (92.5) 

and 
ro<R<s 

inf «R)-^2(Z)<^x(Z)-^,(Z) i „-„- (92.6) 
0<R<S 
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TVe take sup with respect to Z on both sides: 

mf ^i(R)- inf ^2(Z)< sup [^i(Z)--^2(Z)] (92.7) 
0<R<S 0<Z<S 0<Z<S 

I*i(S)~I<i>2(S)< sup [«i(Z)-02(Z)] (92.8) 
0<Z<S 

Now let S vary, and take sup with respect to S: 

sup [I«i(S)-IMS)]< sup [«i(S)~02(S)] (92.9) 
S>0 S>0 

Similarly, by switching subscripts 

Therefore, 

sup [I«2(S)-I«i(S)]< sup [<fe(S)-*i(S)] *   (92.10) 
S>0 S>0 

sup |I«i(S)-I<fe(S) I < sup |<i>a(S)-02(S) I (92.11) 
S>0 S>0 

So we have shown that 

sup |Ji8(S)-Jg(S)|<aM (92) 
S>0 

^Repeating n times, we have 

sup |J'^i8(S)-J°g(S)|<a"M (93) 
S>0 

^nd since Ji3(S)=j8(S), we conclude 

LimJ°g(S)=|8(S) (94) 

This completes the proof. 
We have, then, the result that J°ô(S) approaches a Hinit as n gets 

larger, and the resulting ^i converges to the best statioi^ary rule 
é. The question arises, How close are we to convergence after any 
given number of iterations? This cannot be answered exactly, of 
course (if it could, we would be through before we started), but the 
speed of convergence can be seen by taking the difference J^5(S)—J°~^ 
S{S). In the Emit, this must be zero, and one can continue the 
iterations till it is as close to zero as desired. In practice, however, 
it turns out that this difference becomes nearly a constant long before 
it diminishes to zero. It can easily be shown thatif J°5(S)--J°~^5(S) 
were a constant, then the storage rule would have reached convergence, 
as further iterations would make no further change. Hence in most 
cases httle is gained by continuing the iterations beyond the point 
where eP5(S)—J''"^5(S) is nearly constant. 
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NOTE 6.-MATHEMATICAL EQUIVALENCE OF SOLUTION 
PROCEDURES USING THE MARGINAL VALUE (p) FUNC- 
TION AND THE TOTAL VALUE (6) FUNCTION 
Year n.—C=0 under each procedure. 

Year n—1.—^Using í: 

V„_i,„=í(S-C)-7(C)+aES(C+x) (95.1) 

To maximize with respect to C : 

dV„_,.„/dC=-p(S-C)-7'(C)+aEp(C+x)=0        (95.2) 

This is identical to the condition used in the p—procedure. 
We now check the second order condition : 

cl^„_,.„/dC''=p'(S-C)-y'(C)+aEp'(C+x)<0        (95.3)    . 

since p'<0 and 7">0. 
Year n—2.—^Using 5 : 

V„_2.„=a(S-C)-T(C)+aE^,_i.„(C+x) (96.1) 

To maximize with respect to C : 

dV,.2.„/dC=-p(S-C)-y(C)+aEV:_,.„(C+x)=0     (96.2) 

Using p: 
-p(S-C)-y(C)+aEp[G+x-â„_i(e+x)]=0 (96.3) 

For equivalence, we must show that 

V;_,.„(S)=p[S-ö„_i(S)] (97) 
for every S. 

^n-,.„(S)=Î[S-ê„_i(S)]-7[ê„-.(S)]+aE5[0„_,(S)+x] (97.1) 

. t;_,.„(S)=p[s-ê„_i(S)].[i-ê;-i(S)]-7U_,(S)].ê;_.(S)+ 

aEp[ê„_i(S)+x].ê;_i(S) (97.2) 

=p[S-ö„_,(S)]+e;_i(S).{-p[S-ö„_i(S)]- 

7'[Ön-i(S)]+aEp[e„_i(S)+x]} (97.3) 

=p[S-ê„_,(S)]. (97) 

This completes the proof of equation (97). 
The second order condition is: 

d*y„-,.n/dC*=p'(S-C)-7"(C)+aEp'[C+x-Ön_i(C+x)l. 

[l-¿;_,(C+x)]<0 (98) 
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since 0<Ö'<1. 

To complete the proof, we show that if equivalence holds for n,. 
n—1, .   .   ., n—k-f 1, Q—k, thetl it holds for n—k—1 : 
For n—k: 

dVn_k.n/dC--p(S-C)-y(C)+aE\^Vi.+i.n(C+x)=0    (99.1) 
and 

-p(S-C)-7'(C)+aEp[C+x-ên_k+i(C+x)]=0        (99.2) 
Hence, 

aEt:_k+i.n(C+x)=aEp[C+x-ên-k+i(C+x)] (99.3) 
and 

aEVU+l.n[èn-k(S)+x] = aEp{ên-k(S)+X^Ôn-k+i[ên-k(S)+x]} (99.4) 

Forn-k-l: 
Using 8: 

V„_k_i.n=ô(S-~C)-7(C)+aE\^n-l.n(C+x) (100.1) 

To maximize: 

dVn-k-i,n/dC=-p(S-G)-y(C)+aEVUn(C+x)=0    (100.2) 

Using p: 

-p(S-C)-y(C)+aEp[C+x-Ôn-k(C+x)]=0        (100.3) 

For equivalence, we must show that 

:^U..(S)=p[S-Ck(S)] (101) 
for every S. 

V„_k.n(S) = ô[S-ê„_x(S)]-7K-»(S)]+aEV„_„+..„[o„_k(S)+x]   (lOl.O 

tUn(S)=p[S-ê„_k(S)]. [1 -êU(S)]-7'[o„_,(S)] •è;_.,(S) +   (101.2) 

aEVU+,.„[Ö„_k(S)+x]. êU(S) 

= p[S-ö„_k(S)] + öU(S) {-p[S-ön_k(S)]- 

y[Ôn-k(S)]+aEVU+,.„[ê._k(S)+x]} (101.3) 

=p[S-ö„_k(S)] (101) 

This completes the proof of eqmvalence. 
The second order condition is: 

ci^n-k-l.n/(iC^=p'(S-C)-7"(C)+aEp'[C+X-ên-i(C+x)] 

[l-êU(C+x)]<0 (102) 
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NOTE 7.-EQUIVALENCE OF ŒANGES IN P AND y' (SEE 
PAGE 49) 

(1) If e satisfies 

«f°^P*[C+x-Ö(C+x)]dF(x)-~p*[ö-HC)-C]-7'(C)=0      (103.1) 

ivhere p*(Y)=rp(Y), then the same 6 also satisfies 

arrp[C+x--o(C+x)]dF(^)--rp[¿r^(e)-C]-7'(C)=0 (103.2) 

that is, it satisfies 

«Î"p[C+x-o(C+x)ldFfx)-pfô-i(C)~Cl-il/rVfC^=0    00.^.*^^ 

Hence, changing p(Y) to p*(Y)=rp(Y) is equivalent in its efl^ect^ on 
è to changing y\C) to y*(C) = (l/r) /(C). Also, if p*(Y)=rp(Y) 
and 7'*(C)=r7'(C), then thé samevö is optimal tinder either p*, 
7'*orp, 7'. 

(2) If Ö satisfies 

«rP*[C+x-ö(C+x)]dF(x)-p*[ö-HC)-C]-7'(C)=0     (104.1) 

where p*(Y) = p(Y)+K, then the same 6 also satisfies 

« P p[C+x-ö(C+x)]dF(x)+aK-p[ö-HC)-C]- 

K-7'(C)=0 .{104.2) 
that is, it satisfies 

«P p[C+x-ö(C+x)]dF(x)-p[i?-HC)-CH[7'(C)+(l-a)K]=0 

(104.3) 

Hence, changing p(Y) to p*(Y) = p(Y)+K is equivalent (in its effects 
on é) to changing 7'(C) to 

y*(C)=7'(C) + (l-a)K (104.4) 
(3) If d satisfies 

■        • 

aC p*[C+x-0(C+x)]dF(x)-p*[Ö-nC)-C]-7'(C)=O    (105.1) 
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where p*(Y)=rp(Y)+K, then the same $ also satisfies 

aC Tp[C+x-d{C+x)]dF{x)+aK-Tp[e-'(C)-G]-K---Y (C)=0 

(105.2> 
that is, it satisfies 

a£ p[C+x-e{C+x)]dF(x)-p[d-'(C) -Q-d/T)[Y(G) + (l~a)K]=.0 

(105.3) 

Hence, changing p(Y) to p*(Y)=rp(Y)+K is equivalent in its effects 
on ê to changing 7'(C) to 

y*(C) = (l/r)y(C) + (l/r)(l--a)K (105.4) 

NOTE 8.-RELATION BETWEEN OPTIMAL STORAGE RULES 
UNDER DIFFERENT YIELD DISTRIBUTIONS (SEE PAGE 50) 
To simplify the notation here, consider S, Y, and x to be measured 

as deviations from /*. That is, wherever S appears in this note it 
means S—/i, and similarly for Y and x. Hence, in this note, M=Û. 
Let G and F be alternative probability distributions of x such that if 
g and f are the respective probability density functions, g(rx) = (l/r) 
f (x). Then G has the same mean p, as F, and the standard deviation 
of G is r times the standard deviation of F, i. e., (TQ=T<T:P. 

If da is the optimtal storage rule under G it satisfies 

«f" p[C+j-êa{C+y)]g(j)dy-p[êô\C)-C]-y'(C)=0   (26.5)' 
«/ — 00 

Now define d*(S) = (l/T)êo{TS),   Then o*-HC) = (l/r)(9¿HrC),  since 
if we set C=0*(S) = (l/r)éG(rS) and solve for S, we have 

and 

Also, 

and 

Thus, e* satisfies 

cc r p[C+y-~rí?*(C/r+y/r)]g(y)dy-p[rí?*-UC/r)-C]~y(C)=0 

(107), 

rC=Öo(rS) (106) 

o¿i(rC)=rS (106.1) 

il/T)êô\vC)=S=e*-'iC) (106.2) 

êo(S)=ro*(S/r) (106.3) 

e¿HC)=ro*-KC/r) (106.4) 
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Now let p*(Y)=p(rY), that is, p(Y)=p*(Y/r).    Then 6* satisfies 

-a P*[C/r+y/r^e^(C/r+y/r)]g<y)dy-p*[0*-'(G/r)-C/r]-T'(C)=O 

(107.1) 

But aiûceitbis is true for any value of C, then if 7'(rC)=7'(C) (for 
example, if 7' is constant), 6* satisfies 

'S: P*[C+y/r-ö*(C+y/r)]g(y)dy-p*[ö*-'(C)-G]-7'(C)=0 

■Í   ^'       ^ (107.2) 

Now let J/T—X, SO y=rx and g(y)dy=g(rx)rdx=(l/r)f(x)rdx=f (x)dx. 
Then e* satisfies 

'£ p*[C+x-ö*(C+x)]f(x)dx-p*[ö*-i(C)-C]-7'(C)=0   (107.3) 

lÎénce, to find ^Q, we find S* which satisfies the last equation, and 

then éQ(S)=ro*(S/r)  (where S, it is remembered, is here measured 
from /It). 

NOTE 9,-TPROOF OF THE METHOD OF OBTAINING THE 
OPTIMAL STORAGE RULE e FOR THE CASE WHERE 
FUTURE OUTPUT IS CONSTANT (SEE PAGES 53-54) 
For simplicity, the circumflex ^ is omitted from 6 in this note, it 

being understood that we are dealing with an optimal rule. The seg- 
ments of the rule are designated 6i, Ö2, ^3, . . ., it being understood 
that these are segments of a single rule and not different rules for dif- 
ferent years (as in the earlier notation). The initial poiat for segment di 
(thelower end of the segment) is (Co,So), where Co=0. The terminal point 
for seginent Ö, (the upper end of the segment) is (Ci,Si) (i=l, 2, 3, . . .). 
Our object is to determine the segments of the optimal rule, Ö1, Ö2, . . ., 
and, in particular, to determine the values of the segment connecting 
points (Ci,Si) (i=0,1, 2,. ..), given the discount factor a, the (constant) 
marginal cost of storage 7', and the marginal value function p(Y). 

We designate the constant future harvest by h, and define the 
linear operator D by DZ=aZ—7'. Starting with, the ^'fundamental" 
equation for optimality of the storage rule 6, 

/»CO 

"Jo   "^^"^ x-ö(C+x)]dF(x)-7'(C)-p[Ö-HC)-C]=0   (26.1) 

this becomes, for constant output h and constant marginal cost of 
storage y', 

ap[C+li-0(C+h)]-7'-p[Ö-HC)-C]-O (26.6) 
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which may be rewritten as 

ö-i(C)=C+p-M«p[C+h-ö(C+h)]-7'} (108) 

This is the basic equation to be used in the derivation. 

For C=0, ö"HC)=So (the intercept of B on the S-axis), so, from 

equation (108): 
So=p-H«pPi-ö(h)]-y} (109) 

If p'<0 and a<l and 7'>0, then ö(h)=0, since if Ö(h)>0, then 
So<h, which contradicts ö(h)>0.   Therefore, 

So=p-^[ap(h)-7']=p-^[Dpai)] (41) 

and we have determined the initial point (Co,So) for the first segment 

We thus have ö(S)=0 for S<So, which gives ö(C+h)=0 for 
C+h<So or C<So—h. It follows that [from equation (108)] for 
0 <C <So—h, the inverse storage rule e~^{C) is given by 

ö;ii(C)=C + p-^[ap(C+h)-y] (108.1) 

where di is the first segment of the rule, and is completely defined by 
the expression given.    The terminal point of this segment is: 

Ci=So-h (110.1) 

Si=öiHSo-h) (110.2) 

=So-h+p-^[ap(So)-y] (110.3) 

=So-h+p-^[D2p(h)] (110.4) 

We thus have (9(S) = Öi(S) for So<S<Si, which gives Ö(C+h) = 
Öi(C+h) for So<C+h<Si, or So-h<C<Si-h. It follows (from 
equation (108)) that for SQ—h<C<Si—h, the inverse storage rule 
6~^{0 is given by 

ö-i(C)=C+p-M«p[C+h-.Öi(C+h)]-y} (108.2) 

where O2 is the second segment of the rule, and is completely defined 
by the expression given.   The terminal point of this segment is: 

C2=Si-h (111.1) 

S2=^iHSi-h) (111.2) 

=Si-h+p-H«p[Si-Öi(SO]-y} (111.3) 

=Si-h+p-^Iap(Si-CO-y] (111.4) 
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=S,-li+p->{ap[p->DV(h)]-y} (111.6) 

=S,-h+p-»[aDV(Ii)-7'] (111.6) 

=S,-h+p-'p'p(h)] (111.7) 

Continuing the proof, by induction: If ô(S)=ffi_ï(S) for 
S|.i2<S<Si^i, whesre tke tenninaJ point of öi_i is 

C,_i=S,_2-h (112.1) 

S,_i=S,_j-h+p-ipV(li)] (112.2) 

then it follows [from equation (108)] that for Si_2—h<C<Si_x—h, 
the inverse storage rule 6~^(C) is given by 

eT»(C)=C+p-H«p[C+hÖ,.i(C+h)]-7'} (108.3) 

where dt is the i*" segment of the rule, and is completely defined by the 
expression given.   The terminal point of the i*" segment is: 

Ci=S,_i-h (44) 

S,=0THS,-i-h) (113) 

=S,_i-h+p-H«p[S,-i-0,-i(S,_i)]-yi} (113.1) 

=S,_,-h+p-Hap(S,_i-C,_i)-y] (113.2) 

=S._i-h+p-M«p[p-^DV(h)]-y} (113.3) 

=S._.-h+p->[D'+V(h)] (42) 

To complete the proof, we check that the segments are comiected, 
that is, that the terminal point of the (i-1)*** segment lies on the i**^ 
sèment: 

ö7*(C,.0=C,.i+p-Map[C,_i+h-Ö,-i(Ci-i+h)]-y}     (114) 

that is, 

s,«iic,_i+p-M«p[Si.2"öi-i(s,_2)]-y}       (114.1) 

The expression on the right of the equality sign reduces to 

C,.i+S,_i-S,.2+li=S,.i (115) 

This completes the proof. 
It is clear from the expressions for ^i (i=l,2, . . .) that, if p is 

linear^ the storage rule segments di also are linear. It is fairly easy 
to wnte out explicitly the algebraic expressions for the consecutive 
segments.   If the marginal value function p is not linear, the storage 
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rule segments are not linear, but can usuallv bo adequately approxi- 
mated by linear segments connecting the end points. If tlus approxi- 
mation is felt not to be adequate, intermediate points along the 
segments can be computed using the expressions denved above. 

NOTE 10.-METHOD OF APPROXIMATING THE VALUE OF 
THE S-AXIS INTERCEPT K OF AN OPTIMAL STORAGE 
RULE (SEE PAGES 54-5S) 
We wish to show that the S-axis intercept k of an optimal storage 

nde can be approximated by solving the following equation for k: 
k=K—aaL(k), where for simplicity we substitute the symbol a for the 
symbol 6\ defined on page 55, and the other symbols are defined on 
page 55. 

With given a (by an a priori assimiption about the average slope 
of the optimal storage rule), the optimal rule 6 can be approximated 
by the expression 

,rS^_/^(S-k)forS>k 
^^^^-\0 forS<k J^^^ 

Thenö-HC)=C/a+k. 
If the marginal value function is linear, we use it directly, otherwise 

we approximate it by a linear function p(Y)=q—pY, where q and p 
are chosen to give, at Y=Ex, the same value of p and the same slope 
as that of the actual p. 

With p(Y)=q—pY (actual or approximate), the basic equation 
for optimality of 6 becomes: 

e-'(C)=K+{l+a)C-ar   ö(C+x)dF(x) (40) 
t/k—O 

w"here 
K=77p+(l-«)q/p+«Ex (40.1) 

=Ex-(l~a)p(Ex)/p'(Ex)-y/p'(Ex) ^ (40.2) 

The second expression for K is equivalent to the first, since p=;=—p' 
(Ex) and q=p (Ex)+pEx. 

Using the approximation for 6 given by equation (116), equation 

(40) becomes C/a+k=K+(l+a)C-a f" a(C+x-k)dF(x)    (40.3) 
Jk-C 

SO that, at C=0, we have 

k=K~û:ar (x-k)dF(x)=K-aaL(k) (13.1) 

This completes the proof. 
For the case where the actual p is not linear, a closer approximation 

to k, but one requiring more computational labor, can be obtained as 
follows: 
We have 

Ö-HC)=C+p-^^aJ^%[C+x-ö(C+x)]dF(x)-7'y     (117) 
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Using the approximation for 6 given by equation (116), this becomes- 

€/a+k=C+P"^/aJ^^"%(C+x)(iF(x)+ 

«J^^^p[(l~a)(C+x)ldF(x)-7'\     (117.1) 

so that, at C=0, we have: 

k=p-^/aJ%(x)dF(x)+arp[(l-a)x+ak]dr(x)-y\     (13.2) 

The expression on the right side of the equality sign is a function of 
k, so that the equation can be solved for k by numerical methods. 
When p is linear, the above equation reduces to the simpler one, 

k=K—aaL(k) (13.1) 

NOTE 11.-THE EQUILIBRIUM LEVEL (SEE PAGE 56) 

If 6(S) is continuous and  0<dö(S)/dS<r<l, then consider the 
function 

A(G)= rö(C+x)dF(x)-C (118) 

dA(C)/dC= rV(C4-x)dF(x)~l<r-l<0 (119) 

Therefore, if A(C*)=0 for some value C*, that value is imique. But 
if ö(xmax)> 0, then 

A(0)=J"*ö(x)dF(x)-0>0 (120) 

:and, since dA(C)/dC<Cr—1, therefore C*>0 exists. 
Also, for Ct<C*, A(Ct)>0, that is, f ö(Ct+x)dF(x)>Ct; but f 

*ö(Ct+x)dF(x) <C*, since if this were not so, then we would have I 

^^(Ct+x)dF(x)> I   Ö(C*+x)dF(x), which violates the condition that 
/»OB 

.e'>0. Simüarly, for Ct>C*, A(Ct)<0, that is, I Ö(Ct+x)dF(x)< 

Ct; but r"fl(Ct+x)dF(x) >C*. 

Hence, we have the resiilt that ECt+i always lies between C» and C*. 
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NOTE ».-GENERALIZATION OF THE SOLUTION TO AL. 
LOW FOR EXPORTS (OR IMPORTS) AND OTHER FACTORS 
The basic storage-rule solution can be modified in various ways to 

make it applicable to grains for which foreign trade is important. 
The modification chosen for a particular application depends on the 
circumstances of the particular case, on the amount of information 
available, and on any possible modification in the criterion of optimak 
ity which may be required. 

The simplest situation is one in which a country is committed, as 
by an international agreement, to export (or import) a specified 
amount of the grain each year. In this case, the amount to be 
exported (or imported) is subtracted from (or added to) the total 
supply for the year and storage rules for the residting domestic supply 
are obtained in exactly the same way as outlined for a purely domestic 
grain in the main text. 

Another case is one in which foreign trade occurs in essentially free 
markets. Let Qt be net exports in year t, where "net'' exports meana 
total exports minus total imports. Then the demand for net exports 
may be written, for example, as 

Qt=<^ (Pt, Zt, UQ) (121) 

where <^i is a function to be estimated empirically, Pt is the domestic 
price, Zt is a vector of other demand-influencing variables, say Zt= 
(Zti, ' ' ' I Ztk), and UQ is a random variable. Zt is written as a 
vector to simplify the notation. It would presumably include among 
its elements such variables as foreign incomes, defined and measured 
in some relevant way, foreign supplies of the grain, transportation 
costs, and so forth. If such variables can be suitably defined and 
measured, and the function 0i obtained, it may be incorporated into 
the storage-rule solution in a way outlined below. In situations 
where such empirical measurements are not feasible, the simplest 
approach is to treat net export demand in future years as fluctuating 
in a random way around a price-determined mean value, analogously 
to the way random fluctuations in domestic demand were introduced 
in pages 51-52. 

That is, we write 

Qt=<^2(Pt, UQ) (122) 

where </)2 is a function to be estimated empirically and UQ is a random 
variable whose probability distribution is estimated on the basis of 
past experience, analogously to the estimation of the probability dis- 
tribution of future harvests. Similarly, we have a domestic demand 
function with a random component, 

Yt=<i>3(Pt, UY) (123) 

where Yt is domestic consumption. 
Combining (adding) equations (122) and (123) gives the total 

demand function: 

Dt=Yt+Qt= «4(Pt, Up) (124) 
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If we accept the total public value as measured by the area under thé 
total demand curve, the marginal value function p is obtained by 
solving equation (124) for P*: 

Pt=p(Dt, UD) (125) 

The optimal storage rules are then obtained in the way described in 
pages 40-48, noting that in any year t the identity 

Dt=Yt+Qt=St-Ct (126) 

must apply, that is, 

Pt=p[(St-Ct), UD] (127) 

Returning to the situation where equation (121) can be estimated, 
we may assume that a more precise domestic demand function than 
equation (123) is also estimatable, and write for domestic demand, 
say, 

Yt=<f6(Pt, Zt, UT) (128) 

where the vector Zt is expanded to include variables influencing 
domestic demand as well as those influencing foreign demand.^^ 
From equations (121) and (128), obtain the total demand function 

Dt=Yt+Qt=*6(Pt, Zt, UD) (129) 

and solve for Pt to get the marginal value function p: 

Pt=p(Öt, Zt, u) (130) 

or 

Pt=p[(St-Ct), Zt, u] (131) 

^here the subscript D in uß is dropped for simplicity. 
Consider now the situation in any year t. The variable u may be 

treated as known for the current year, written Ut, and as a random 
variable with known distribution in each future y^ear, say Ut+j (j>0). 
The problem now is the following: 

«2 This notation is adopted for convenience. All it means is that some of the 
elements of Z will appear with zero coefficients in equation (121), and other 
elements will appear with zero coefficients in equation (128). We ignore here a 
possible difficulty arising from "endogeneity" in some of the elements of Z, such 
as might occur, for example, in a country a large part of whose national income 
depended on production or exports of the grain. One way around such a possible 
difficulty would be to restrict the choice of variables in Z to those which are 
largely exogenous and/or lagged or "predetermined". For example, rather than, 
including prices of possible substitute commodities (which may be partly endo^ 
genous) in the demand equation, it would generally be better to use their supplies,: 
which in any given year may, at least in many cases, be treated as largely pre- 
determined. This also makes the resulting demand function a better approxi- 
mation to the (inverse) marginal value function, as described on pages 13-15. 
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Oiven the storage rule Öt+i which is 
a) applicable in year t+1; i 
b) a function of wSt+i, Zt^-i, and Ut+i; and 
c) optimal by the accepted criterion; 

to find the storage rule ^t which is 
a) applicable in year t; 
b) a function of St, Zt, and Ut; and 
c) optimal. 

If this problem is solved, then optimal storage rules for any num- 
ber of years n can be found by the backward-iterative procedure, 
starting with the n*^ year, and working back till the required nambei; 
of years is covered (for a finite time horizon) or until convergence is 
obtained (for the case of stationarity). 

A¿ain taking for total public value the area under the total demand 
cxu^e, we obtain as the condition for optimality of Öt(St, Zt, Ut), 
given the optimality of ötfi(St+i, Zt+i, Ut+i), the following: for every 
value of St, Zt and Ut, the carryover Ct must satisfy: 

p[(St-Ct), Zt, Ut]=-7'(Ct)+aEp{[Ct+x^i 

-öt+i(Ct+Xt+i, Z^i, Ut+i)], Zt^i, ut+i)      (132) 

where 7^(Ct) is the marginal cost of storage and the expectation oper- 
ator E is taken over the distributions of Xt+i and Ut+i. (As in thé 
earUer solutions, if the vidue of Gt which oatisfifies eqnatidn (132) is 
negative, the optimal carryover is zero.) 

If equation (132) is solved for Ct, then Ct becomes a function of 
St, Zt, Ut, and Zt^-i. The Zt+i variables mi^t be eliminated, since 
they are, in general, not observable in period t. We introduce "ex- 
pectation functions'' or "prediction equations" as follows: 

Zt+i,i=€i(Zti, • • . 9 Ztk9 v^ (133.1) 

ZHi,k =€k(Zti,. ^ • , Ztk, vO (133.k) 

where the functions €i, . . . ; ^ and the distributions of the random 
variables Vi, . . . , v^ are to be empirically estimated.^ 

Equations (133.1)—(133.k) may be summarized in vector notation as 

Zt+i=c(Zt,v) (133) 

^ The Z vector is possibly again expanded to include some prediction variables 
in addition to those already included as demand-determining variables. Again 
this is simply a matter of notational convenience. Those elements of Z which 
are irrelevant in any particular equation are considered to have zero coefficients 
therein. It may be that in one or more of equations (133.1)--(133.k),all of 
Zti, . . . , Ztk appear with zero coefficients. If this should happen for, say, equa- 
tion (133.J), it simply means that Zt+u must, on the basis of available empidcal 
data, be treated as a random variable whose distribution is that of vj. 
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yor somewhat greater generality, we may also introduce a predic- 
tion equation for output in period t+1 : 

Xt+i=€x(Zt,w) (134) 

where the function Cx and the distribution of the random variable w 
are estimated empirically, and Zt now includes elements, for example 
lagged prices or acreage controls, which may aid in predicting Xt+i.^ 

Substituting (133) and (134) into (132) gives 

p[(St-Ct),Zt,Ut]=-y(Ct)+aEp{[Ct+Cx(Zt,w)- 

i?t+l(Ct+€x(Zt, W),  6(Zt, V), Ut+i)],  c(Zt, V), Ut+i}      (135) 

where the expectation operator E is taken as the integral over the 
distributions of Ut+i, w, and v=(Vi, . . . , v^). Solving equation (135) 
for Ct gives Ct as a function of St, Zj, and Ut: the desired optimal 
storage rule for period t: 

Ct-i?t(St, Zt, Ut) (136) 

So far we have considered only cases where 
a) the criterion of optimality is determined by taking total publie 

value as equal tQ the area imder the total demand curve, and 
b) exports are price-determined in a free market. The methoda 

can also be modified to allow for other kinds of criteria and/or possibly 
other institutional arrangements. In general, we can write total 
public value as a function, in each penod t, of quantity consumed 
domestically and (net) quantity exported, say 

«t=5t(Yt,Qt) (137) 

where we omit, for simphcity, the possibility of random components 
and/or other determining variables j these can be reintroduced in a way 
analogous to the ppociäures outlined in the preceding paragraplia. 
For example, total public value might bè defiriea as the área under the 
domestic demand curve (a function of Yt) ply^ total revenue from ex- 
ports (a function of Qt). Taking into account the identity (126), 
equation (137) becomes 

at=it[(St-Ct-Qt), Qtl (137.1) 

•< In summary, then, the vector Zt consists of variables which are observable^ 
in period t and which: 
a) lUQTect domestic demand in period t; 
b) affect net export demand in period t; 
c) affect output in period t-fl; 
d) are useful for predating elements of Zt+i; and 
e) are preferably lariglly exogenous or predetermined. 
It is clear that most of the elements of Zt will have zero coefficients in most^ 
of the equations in which Zt appears. 
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That is, for given St, 5t is a function of Ct and Qt- There are now two 
principal possibiHties open, depending on the institutional setting: 

a) If exports are price-determined in a free market, then an addi- 
tional relation between Yt and Qt is established; that is, equations 
(122) and (123) can be combined (eliminating the price variable) to 
give, say 

Qt=<h(Y,) (138) 

(omitting the random components for simplicity). Combining 
equations (137), (126) and (138) gives total pubHc value as a function 
of supply and carryout, 

5t=«8(St,Ct) (137.2) 

which can then be used directly in the method of pages 40-44, or, if 
6 is continuous and difierentiable, the method of pages 44-48. 

b) Alternatively, equation (137.1) maybe looked on as a function 
with two variables which are -*controllable^^ by a '^policy maker," 
namely Ct and Qt. This would in general imply a '^two price" system, 
with the necessity of adding an additional variable for the export 
price, say Pf: 

5t=ôt[(St-Ct-Qt), Qt, P?] (137.3) 

PJ may be related to Qt by a function analogous to equations (122) or 
(121), or, if the country's exports are small relative to total world 
supply, Pt may be treated as a random or partly predictable variable 
independent of Qt. Then the solution proceeds by a generalization of 
the method of pages 40-44; at each step the expectation operator is 
taken over the distributions of both future output and future export 
f)rice; and the maximization is with respect to both C and Q, thus 
eading to a set of ''storage rules" and ''export rules," each of which is 

á function of current supply and current export price. However, in 
this case the resulting solutions may not always be unique. 
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